{"title":"基于伪标签选择的车辆网络联合半监督学习框架","authors":"Jiachen Liu, Haoren Ke, Jianfeng Yang, Tianqi Yu","doi":"10.1049/cmu2.70035","DOIUrl":null,"url":null,"abstract":"<p>In vehicular networks, federated learning (FL) has been used for secure and distributed edge intelligence to support deep neural network (DNN) model training. In the FL, the roadside units (RSUs) and vehicles act as the parameter servers and clients, respectively. However, the raw data collected by the vehicles are normally unlabeled, which can hardly meet the requirements of the supervised learning tasks. To resolve the related issues, a federated semi-supervised learning (FSSL) framework is proposed in this paper. By leveraging semi-supervised learning (SSL), the framework can implement the model training with unlabeled data in vehicles and a small set of manually annotated data in the RSU. Furthermore, a pseudo-label selection method is developed for the vehicles to improve the local pseudo-label prediction accuracy and the convergence of global model training. Simulation experiments have been conducted to evaluate the performance of the proposed FSSL framework. The experimental results show that the proposed framework can effectively utilize unlabeled data in vehicular networks and complete the task of DNN model training.</p>","PeriodicalId":55001,"journal":{"name":"IET Communications","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70035","citationCount":"0","resultStr":"{\"title\":\"Pseudo-Label Selection-Based Federated Semi-Supervised Learning Framework for Vehicular Networks\",\"authors\":\"Jiachen Liu, Haoren Ke, Jianfeng Yang, Tianqi Yu\",\"doi\":\"10.1049/cmu2.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In vehicular networks, federated learning (FL) has been used for secure and distributed edge intelligence to support deep neural network (DNN) model training. In the FL, the roadside units (RSUs) and vehicles act as the parameter servers and clients, respectively. However, the raw data collected by the vehicles are normally unlabeled, which can hardly meet the requirements of the supervised learning tasks. To resolve the related issues, a federated semi-supervised learning (FSSL) framework is proposed in this paper. By leveraging semi-supervised learning (SSL), the framework can implement the model training with unlabeled data in vehicles and a small set of manually annotated data in the RSU. Furthermore, a pseudo-label selection method is developed for the vehicles to improve the local pseudo-label prediction accuracy and the convergence of global model training. Simulation experiments have been conducted to evaluate the performance of the proposed FSSL framework. The experimental results show that the proposed framework can effectively utilize unlabeled data in vehicular networks and complete the task of DNN model training.</p>\",\"PeriodicalId\":55001,\"journal\":{\"name\":\"IET Communications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cmu2.70035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.70035\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Communications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cmu2.70035","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Pseudo-Label Selection-Based Federated Semi-Supervised Learning Framework for Vehicular Networks
In vehicular networks, federated learning (FL) has been used for secure and distributed edge intelligence to support deep neural network (DNN) model training. In the FL, the roadside units (RSUs) and vehicles act as the parameter servers and clients, respectively. However, the raw data collected by the vehicles are normally unlabeled, which can hardly meet the requirements of the supervised learning tasks. To resolve the related issues, a federated semi-supervised learning (FSSL) framework is proposed in this paper. By leveraging semi-supervised learning (SSL), the framework can implement the model training with unlabeled data in vehicles and a small set of manually annotated data in the RSU. Furthermore, a pseudo-label selection method is developed for the vehicles to improve the local pseudo-label prediction accuracy and the convergence of global model training. Simulation experiments have been conducted to evaluate the performance of the proposed FSSL framework. The experimental results show that the proposed framework can effectively utilize unlabeled data in vehicular networks and complete the task of DNN model training.
期刊介绍:
IET Communications covers the fundamental and generic research for a better understanding of communication technologies to harness the signals for better performing communication systems using various wired and/or wireless media. This Journal is particularly interested in research papers reporting novel solutions to the dominating problems of noise, interference, timing and errors for reduction systems deficiencies such as wasting scarce resources such as spectra, energy and bandwidth.
Topics include, but are not limited to:
Coding and Communication Theory;
Modulation and Signal Design;
Wired, Wireless and Optical Communication;
Communication System
Special Issues. Current Call for Papers:
Cognitive and AI-enabled Wireless and Mobile - https://digital-library.theiet.org/files/IET_COM_CFP_CAWM.pdf
UAV-Enabled Mobile Edge Computing - https://digital-library.theiet.org/files/IET_COM_CFP_UAV.pdf