基于机器学习和深度学习算法的不同土地利用类型土壤有机碳含量变异性分析及其数字制图

IF 2.9 4区 环境科学与生态学 Q3 ENVIRONMENTAL SCIENCES
Mounir Oukhattar, Sébastien Gadal, Yannick Robert, Nicolas Saby, Ismaguil Hanadé Houmma, Catherine Keller
{"title":"基于机器学习和深度学习算法的不同土地利用类型土壤有机碳含量变异性分析及其数字制图","authors":"Mounir Oukhattar,&nbsp;Sébastien Gadal,&nbsp;Yannick Robert,&nbsp;Nicolas Saby,&nbsp;Ismaguil Hanadé Houmma,&nbsp;Catherine Keller","doi":"10.1007/s10661-025-13972-0","DOIUrl":null,"url":null,"abstract":"<div><p>Soil organic carbon (SOC) plays a crucial role in carbon cycle management and soil fertility. Understanding the spatial variations in SOC content is vital for supporting sustainable soil resource management. In this study, we analyzed the variability in SOC content across eleven different types of land use in the mining basin of Provence in southeastern France. We modelled this variability spatially using machine and deep learning regression. Four algorithms were tested: random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and deep neural networks (DNNs). These integrated 162 soil samples and 21 environmental covariates, including climatic parameters, lithology, topographical features, land cover, remote sensing data, and soil physicochemical parameters. The results clearly show a large variability in SOC content across land use types, with forests revealing the highest values (mean of 69.3 g/kg) and arable land the lowest (mean of 8.9 g/kg). The Pearson correlation coefficients (<i>R</i>) indicate that land cover, topography, lithology, environmental indices, and clay content are the main factors influencing the SOC content. The XGBoost model generated the best result (<i>R</i><sup>2</sup> = 0.73), closely followed by RF (<i>R</i><sup>2</sup> = 0.68) and DNN (<i>R</i><sup>2</sup> = 0.60), while SVM showed the weakest performance (<i>R</i><sup>2</sup> = 0.36). XGBoost and RF remain the best options for obtaining reliable results with a limited number of soil samples and reduced calculation time. The results of this study provide vital insights for managing soil organic carbon in southeastern France and for climate change mitigation in sustainable land management.</p></div>","PeriodicalId":544,"journal":{"name":"Environmental Monitoring and Assessment","volume":"197 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variability analysis of soil organic carbon content across land use types and its digital mapping using machine learning and deep learning algorithms\",\"authors\":\"Mounir Oukhattar,&nbsp;Sébastien Gadal,&nbsp;Yannick Robert,&nbsp;Nicolas Saby,&nbsp;Ismaguil Hanadé Houmma,&nbsp;Catherine Keller\",\"doi\":\"10.1007/s10661-025-13972-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil organic carbon (SOC) plays a crucial role in carbon cycle management and soil fertility. Understanding the spatial variations in SOC content is vital for supporting sustainable soil resource management. In this study, we analyzed the variability in SOC content across eleven different types of land use in the mining basin of Provence in southeastern France. We modelled this variability spatially using machine and deep learning regression. Four algorithms were tested: random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and deep neural networks (DNNs). These integrated 162 soil samples and 21 environmental covariates, including climatic parameters, lithology, topographical features, land cover, remote sensing data, and soil physicochemical parameters. The results clearly show a large variability in SOC content across land use types, with forests revealing the highest values (mean of 69.3 g/kg) and arable land the lowest (mean of 8.9 g/kg). The Pearson correlation coefficients (<i>R</i>) indicate that land cover, topography, lithology, environmental indices, and clay content are the main factors influencing the SOC content. The XGBoost model generated the best result (<i>R</i><sup>2</sup> = 0.73), closely followed by RF (<i>R</i><sup>2</sup> = 0.68) and DNN (<i>R</i><sup>2</sup> = 0.60), while SVM showed the weakest performance (<i>R</i><sup>2</sup> = 0.36). XGBoost and RF remain the best options for obtaining reliable results with a limited number of soil samples and reduced calculation time. The results of this study provide vital insights for managing soil organic carbon in southeastern France and for climate change mitigation in sustainable land management.</p></div>\",\"PeriodicalId\":544,\"journal\":{\"name\":\"Environmental Monitoring and Assessment\",\"volume\":\"197 5\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Monitoring and Assessment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10661-025-13972-0\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Monitoring and Assessment","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10661-025-13972-0","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

土壤有机碳在碳循环管理和土壤肥力中起着至关重要的作用。了解土壤有机碳含量的空间变化规律对土壤资源的可持续管理具有重要意义。在这项研究中,我们分析了法国东南部普罗旺斯矿区11种不同土地利用类型土壤有机碳含量的变化。我们使用机器和深度学习回归对这种可变性进行了空间建模。测试了四种算法:随机森林(RF)、支持向量机(SVM)、极端梯度增强(XGBoost)和深度神经网络(dnn)。这些数据整合了162个土壤样本和21个环境协变量,包括气候参数、岩性、地形特征、土地覆盖、遥感数据和土壤理化参数。结果表明,不同土地利用类型土壤有机碳含量存在较大差异,森林土壤有机碳含量最高(平均69.3 g/kg),耕地土壤有机碳含量最低(平均8.9 g/kg)。Pearson相关系数(R)表明,土地覆被、地形、岩性、环境指标和粘土含量是影响土壤有机碳含量的主要因素。XGBoost模型的效果最好(R2 = 0.73), RF (R2 = 0.68)和DNN (R2 = 0.60)紧随其后,SVM表现最差(R2 = 0.36)。XGBoost和RF仍然是在有限的土壤样品数量和减少计算时间下获得可靠结果的最佳选择。这项研究的结果为管理法国东南部的土壤有机碳和在可持续土地管理中减缓气候变化提供了重要的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variability analysis of soil organic carbon content across land use types and its digital mapping using machine learning and deep learning algorithms

Soil organic carbon (SOC) plays a crucial role in carbon cycle management and soil fertility. Understanding the spatial variations in SOC content is vital for supporting sustainable soil resource management. In this study, we analyzed the variability in SOC content across eleven different types of land use in the mining basin of Provence in southeastern France. We modelled this variability spatially using machine and deep learning regression. Four algorithms were tested: random forest (RF), support vector machine (SVM), extreme gradient boosting (XGBoost), and deep neural networks (DNNs). These integrated 162 soil samples and 21 environmental covariates, including climatic parameters, lithology, topographical features, land cover, remote sensing data, and soil physicochemical parameters. The results clearly show a large variability in SOC content across land use types, with forests revealing the highest values (mean of 69.3 g/kg) and arable land the lowest (mean of 8.9 g/kg). The Pearson correlation coefficients (R) indicate that land cover, topography, lithology, environmental indices, and clay content are the main factors influencing the SOC content. The XGBoost model generated the best result (R2 = 0.73), closely followed by RF (R2 = 0.68) and DNN (R2 = 0.60), while SVM showed the weakest performance (R2 = 0.36). XGBoost and RF remain the best options for obtaining reliable results with a limited number of soil samples and reduced calculation time. The results of this study provide vital insights for managing soil organic carbon in southeastern France and for climate change mitigation in sustainable land management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Monitoring and Assessment
Environmental Monitoring and Assessment 环境科学-环境科学
CiteScore
4.70
自引率
6.70%
发文量
1000
审稿时长
7.3 months
期刊介绍: Environmental Monitoring and Assessment emphasizes technical developments and data arising from environmental monitoring and assessment, the use of scientific principles in the design of monitoring systems at the local, regional and global scales, and the use of monitoring data in assessing the consequences of natural resource management actions and pollution risks to man and the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信