关于一个涉及变量指数的瑞利商,它依赖于测试函数

IF 0.5 4区 数学 Q3 MATHEMATICS
Mihai Mihăilescu, Denisa Stancu-Dumitru, Anisia Teca
{"title":"关于一个涉及变量指数的瑞利商,它依赖于测试函数","authors":"Mihai Mihăilescu,&nbsp;Denisa Stancu-Dumitru,&nbsp;Anisia Teca","doi":"10.1007/s00013-024-02097-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(p:{{\\mathbb {R}}}\\rightarrow (1,\\infty )\\)</span> be a bounded and continuous function. In this paper, we are concerned with the study of the positivity of the infimum <span>\\(\\inf \\limits _{u\\in C_0^\\infty (\\Omega ){\\setminus }\\{0\\}}\\frac{\\displaystyle {\\int _\\Omega }|\\nabla u(x)|^{p(u(x))}\\;dx}{\\displaystyle {\\int _\\Omega }|u(x)|^{p(u(x))}\\;dx}\\,\\)</span> for all open and bounded domains <span>\\(\\Omega \\subset {{\\mathbb {R}}}^N\\)</span> (<span>\\(N\\ge 1\\)</span>). In particular, we give some sufficient conditions on the function <i>p</i> in order to get the positivity of the above infimum and we provide examples of functions <i>p</i> for which the infimum vanishes.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 5","pages":"557 - 570"},"PeriodicalIF":0.5000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-024-02097-4.pdf","citationCount":"0","resultStr":"{\"title\":\"On a Rayleigh-type quotient involving a variable exponent which depends on test functions\",\"authors\":\"Mihai Mihăilescu,&nbsp;Denisa Stancu-Dumitru,&nbsp;Anisia Teca\",\"doi\":\"10.1007/s00013-024-02097-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(p:{{\\\\mathbb {R}}}\\\\rightarrow (1,\\\\infty )\\\\)</span> be a bounded and continuous function. In this paper, we are concerned with the study of the positivity of the infimum <span>\\\\(\\\\inf \\\\limits _{u\\\\in C_0^\\\\infty (\\\\Omega ){\\\\setminus }\\\\{0\\\\}}\\\\frac{\\\\displaystyle {\\\\int _\\\\Omega }|\\\\nabla u(x)|^{p(u(x))}\\\\;dx}{\\\\displaystyle {\\\\int _\\\\Omega }|u(x)|^{p(u(x))}\\\\;dx}\\\\,\\\\)</span> for all open and bounded domains <span>\\\\(\\\\Omega \\\\subset {{\\\\mathbb {R}}}^N\\\\)</span> (<span>\\\\(N\\\\ge 1\\\\)</span>). In particular, we give some sufficient conditions on the function <i>p</i> in order to get the positivity of the above infimum and we provide examples of functions <i>p</i> for which the infimum vanishes.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 5\",\"pages\":\"557 - 570\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-024-02097-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02097-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02097-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设\(p:{{\mathbb {R}}}\rightarrow (1,\infty )\)为有界连续函数。在本文中,我们研究了所有开放和有界域\(\Omega \subset {{\mathbb {R}}}^N\) (\(N\ge 1\))的无穷大\(\inf \limits _{u\in C_0^\infty (\Omega ){\setminus }\{0\}}\frac{\displaystyle {\int _\Omega }|\nabla u(x)|^{p(u(x))}\;dx}{\displaystyle {\int _\Omega }|u(x)|^{p(u(x))}\;dx}\,\)的正性。特别地,我们给出了函数p的一些充分条件以得到上述极小值的正性,并给出了函数p的极小值消失的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Rayleigh-type quotient involving a variable exponent which depends on test functions

Let \(p:{{\mathbb {R}}}\rightarrow (1,\infty )\) be a bounded and continuous function. In this paper, we are concerned with the study of the positivity of the infimum \(\inf \limits _{u\in C_0^\infty (\Omega ){\setminus }\{0\}}\frac{\displaystyle {\int _\Omega }|\nabla u(x)|^{p(u(x))}\;dx}{\displaystyle {\int _\Omega }|u(x)|^{p(u(x))}\;dx}\,\) for all open and bounded domains \(\Omega \subset {{\mathbb {R}}}^N\) (\(N\ge 1\)). In particular, we give some sufficient conditions on the function p in order to get the positivity of the above infimum and we provide examples of functions p for which the infimum vanishes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信