一维傅里叶热传导波动方程耦合系统的稳定性结果

Q2 Mathematics
Hizia Bounadja, Oumkeltoum Benhamouda, Salim Messaoudi
{"title":"一维傅里叶热传导波动方程耦合系统的稳定性结果","authors":"Hizia Bounadja,&nbsp;Oumkeltoum Benhamouda,&nbsp;Salim Messaoudi","doi":"10.1007/s11565-025-00591-3","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, we consider a coupled system of two wave equations with only one thermal effect in a one-dimensional domain. We give the well-posedness using the semigroup theory and show that the solution of the system decays polynomially by constructing an appropriate Lyapunov function.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A stability result of a one-dimensional coupled system of wave equations with Fourier heat conduction\",\"authors\":\"Hizia Bounadja,&nbsp;Oumkeltoum Benhamouda,&nbsp;Salim Messaoudi\",\"doi\":\"10.1007/s11565-025-00591-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this work, we consider a coupled system of two wave equations with only one thermal effect in a one-dimensional domain. We give the well-posedness using the semigroup theory and show that the solution of the system decays polynomially by constructing an appropriate Lyapunov function.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-025-00591-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-025-00591-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们考虑在一维域中只有一个热效应的两个波动方程的耦合系统。利用半群理论给出了系统的适定性,并通过构造适当的Lyapunov函数证明了系统的解是多项式衰减的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stability result of a one-dimensional coupled system of wave equations with Fourier heat conduction

In this work, we consider a coupled system of two wave equations with only one thermal effect in a one-dimensional domain. We give the well-posedness using the semigroup theory and show that the solution of the system decays polynomially by constructing an appropriate Lyapunov function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信