用一个简单的递归式从上面得到Klarner常数

IF 0.5 4区 数学 Q3 MATHEMATICS
Vuong Bui
{"title":"用一个简单的递归式从上面得到Klarner常数","authors":"Vuong Bui","doi":"10.1007/s00013-024-02099-2","DOIUrl":null,"url":null,"abstract":"<div><p>Klarner and Rivest showed that the growth of the number of polyominoes, also known as Klarner’s constant, is at most <span>\\(2+2\\sqrt{2}&lt;4.83\\)</span> by viewing polyominoes as a sequence of twigs with appropriate weights given to each twig and studying the corresponding multivariate generating function. In this short note, we give a simpler proof by a recurrence on an upper bound. In particular, we show that the number of polyominoes with <i>n</i> cells is at most <i>G</i>(<i>n</i>) with <span>\\(G(0)=G(1)=1\\)</span> and for <span>\\(n\\ge 2\\)</span>, </p><div><div><span>$$\\begin{aligned} G(n) = 2\\sum _{m=1}^{n-1} G(m)G(n-1-m). \\end{aligned}$$</span></div></div><p>It should be noted that <i>G</i>(<i>n</i>) has multiple combinatorial interpretations in the literature.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 5","pages":"517 - 523"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bounding Klarner’s constant from above using a simple recurrence\",\"authors\":\"Vuong Bui\",\"doi\":\"10.1007/s00013-024-02099-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Klarner and Rivest showed that the growth of the number of polyominoes, also known as Klarner’s constant, is at most <span>\\\\(2+2\\\\sqrt{2}&lt;4.83\\\\)</span> by viewing polyominoes as a sequence of twigs with appropriate weights given to each twig and studying the corresponding multivariate generating function. In this short note, we give a simpler proof by a recurrence on an upper bound. In particular, we show that the number of polyominoes with <i>n</i> cells is at most <i>G</i>(<i>n</i>) with <span>\\\\(G(0)=G(1)=1\\\\)</span> and for <span>\\\\(n\\\\ge 2\\\\)</span>, </p><div><div><span>$$\\\\begin{aligned} G(n) = 2\\\\sum _{m=1}^{n-1} G(m)G(n-1-m). \\\\end{aligned}$$</span></div></div><p>It should be noted that <i>G</i>(<i>n</i>) has multiple combinatorial interpretations in the literature.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 5\",\"pages\":\"517 - 523\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-024-02099-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-024-02099-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Klarner和Rivest通过研究相应的多元生成函数,将polyominos视为一系列小枝,并赋予每个小枝适当的权值,证明了polyominos数量的增长(也称为Klarner常数)至多为\(2+2\sqrt{2}<4.83\)。在这篇简短的笔记中,我们用上界的递归式给出一个更简单的证明。特别地,我们表明含有n个细胞的多多项式的数量最多为G(n),对于\(G(0)=G(1)=1\)和\(n\ge 2\), $$\begin{aligned} G(n) = 2\sum _{m=1}^{n-1} G(m)G(n-1-m). \end{aligned}$$。应该注意的是,G(n)在文献中有多种组合解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bounding Klarner’s constant from above using a simple recurrence

Klarner and Rivest showed that the growth of the number of polyominoes, also known as Klarner’s constant, is at most \(2+2\sqrt{2}<4.83\) by viewing polyominoes as a sequence of twigs with appropriate weights given to each twig and studying the corresponding multivariate generating function. In this short note, we give a simpler proof by a recurrence on an upper bound. In particular, we show that the number of polyominoes with n cells is at most G(n) with \(G(0)=G(1)=1\) and for \(n\ge 2\),

$$\begin{aligned} G(n) = 2\sum _{m=1}^{n-1} G(m)G(n-1-m). \end{aligned}$$

It should be noted that G(n) has multiple combinatorial interpretations in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信