具有水合物层的大块纳米气泡的稳定性

IF 1.4 4区 化学 Q4 CHEMISTRY, PHYSICAL
Yu. K. Levin
{"title":"具有水合物层的大块纳米气泡的稳定性","authors":"Yu. K. Levin","doi":"10.1134/S1061933X24601276","DOIUrl":null,"url":null,"abstract":"<p>The stabilization of bulk nanobubbles with a balance at their boundary of the Laplace pressure due to surface tension and electrostatic pressure due to Coulomb forces is considered. The presence of a hydrate layer of thickness ~1 nm with a tangential orientation of water dipoles around it is taken into account, the low permittivity of which, approximately equal to 3, increases the pressure at the boundary of the nanobubble. The dimensions and charge of a stable nanobubble are determined. It is shown that in salt water, the hydrate layer, regardless of the charge of the nanobubble, increases the pressure at its boundary by almost 30 times, and in fresh water—from 10 to 4 times.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"87 1","pages":"32 - 37"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of Bulk Nanobubbles with a Hydrate Layer\",\"authors\":\"Yu. K. Levin\",\"doi\":\"10.1134/S1061933X24601276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The stabilization of bulk nanobubbles with a balance at their boundary of the Laplace pressure due to surface tension and electrostatic pressure due to Coulomb forces is considered. The presence of a hydrate layer of thickness ~1 nm with a tangential orientation of water dipoles around it is taken into account, the low permittivity of which, approximately equal to 3, increases the pressure at the boundary of the nanobubble. The dimensions and charge of a stable nanobubble are determined. It is shown that in salt water, the hydrate layer, regardless of the charge of the nanobubble, increases the pressure at its boundary by almost 30 times, and in fresh water—from 10 to 4 times.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":\"87 1\",\"pages\":\"32 - 37\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X24601276\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24601276","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

考虑了由于表面张力引起的拉普拉斯压力和库仑力引起的静电压力在其边界处达到平衡的体纳米气泡的稳定化问题。考虑到厚度约为1 nm的水合物层的存在,其周围有水偶极子的切向取向,其低介电常数约为3,增加了纳米气泡边界的压力。测定了稳定纳米泡的尺寸和电荷。结果表明,在盐水中,无论纳米气泡带多少电荷,水合物层的边界压力都增加了近30倍,而在淡水中,水合物层的边界压力增加了10倍至4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of Bulk Nanobubbles with a Hydrate Layer

The stabilization of bulk nanobubbles with a balance at their boundary of the Laplace pressure due to surface tension and electrostatic pressure due to Coulomb forces is considered. The presence of a hydrate layer of thickness ~1 nm with a tangential orientation of water dipoles around it is taken into account, the low permittivity of which, approximately equal to 3, increases the pressure at the boundary of the nanobubble. The dimensions and charge of a stable nanobubble are determined. It is shown that in salt water, the hydrate layer, regardless of the charge of the nanobubble, increases the pressure at its boundary by almost 30 times, and in fresh water—from 10 to 4 times.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Colloid Journal
Colloid Journal 化学-物理化学
CiteScore
2.20
自引率
18.20%
发文量
36
审稿时长
6-12 weeks
期刊介绍: Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信