S. G. Laishevkina, L. M. Druian, O. D. Iakobson, E. M. Ivan’kova, B. M. Shabsel’s, N. N. Shevchenko
{"title":"含磺酸基球形聚合物凝胶的合成及其吸附性能","authors":"S. G. Laishevkina, L. M. Druian, O. D. Iakobson, E. M. Ivan’kova, B. M. Shabsel’s, N. N. Shevchenko","doi":"10.1134/S1061933X24601045","DOIUrl":null,"url":null,"abstract":"<p>Porous crosslinked polyelectrolyte microspheres 1–5 μm in diameter have been synthesized on the basis of either <i>p</i>-styrene sulfonate used as a functional monomer or a mixture of <i>p</i>-styrene sulfonate and vinyl acetate. The content of sulfonate groups in the obtained polyelectrolyte microspheres is higher than 2 mmol/g. It has been shown that the incorporation of the hydrophobic comonomer significantly increases the swelling degree of the polyelectrolyte microspheres. The adsorption value of model compounds (fuchsine and methylene blue) has been found to significantly exceed the concentration of sulfonate groups. The morphology and structure of the surface layer of polyelectrolyte microspheres have been studied by optical and scanning electron microscopy and FTIR spectroscopy, while their specific surface area has been determined by the BET method.</p>","PeriodicalId":521,"journal":{"name":"Colloid Journal","volume":"87 1","pages":"22 - 31"},"PeriodicalIF":1.4000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spherical Polymer Gels Containing Sulfonate Groups: Synthesis and Adsorption Properties\",\"authors\":\"S. G. Laishevkina, L. M. Druian, O. D. Iakobson, E. M. Ivan’kova, B. M. Shabsel’s, N. N. Shevchenko\",\"doi\":\"10.1134/S1061933X24601045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Porous crosslinked polyelectrolyte microspheres 1–5 μm in diameter have been synthesized on the basis of either <i>p</i>-styrene sulfonate used as a functional monomer or a mixture of <i>p</i>-styrene sulfonate and vinyl acetate. The content of sulfonate groups in the obtained polyelectrolyte microspheres is higher than 2 mmol/g. It has been shown that the incorporation of the hydrophobic comonomer significantly increases the swelling degree of the polyelectrolyte microspheres. The adsorption value of model compounds (fuchsine and methylene blue) has been found to significantly exceed the concentration of sulfonate groups. The morphology and structure of the surface layer of polyelectrolyte microspheres have been studied by optical and scanning electron microscopy and FTIR spectroscopy, while their specific surface area has been determined by the BET method.</p>\",\"PeriodicalId\":521,\"journal\":{\"name\":\"Colloid Journal\",\"volume\":\"87 1\",\"pages\":\"22 - 31\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Colloid Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1061933X24601045\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S1061933X24601045","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Spherical Polymer Gels Containing Sulfonate Groups: Synthesis and Adsorption Properties
Porous crosslinked polyelectrolyte microspheres 1–5 μm in diameter have been synthesized on the basis of either p-styrene sulfonate used as a functional monomer or a mixture of p-styrene sulfonate and vinyl acetate. The content of sulfonate groups in the obtained polyelectrolyte microspheres is higher than 2 mmol/g. It has been shown that the incorporation of the hydrophobic comonomer significantly increases the swelling degree of the polyelectrolyte microspheres. The adsorption value of model compounds (fuchsine and methylene blue) has been found to significantly exceed the concentration of sulfonate groups. The morphology and structure of the surface layer of polyelectrolyte microspheres have been studied by optical and scanning electron microscopy and FTIR spectroscopy, while their specific surface area has been determined by the BET method.
期刊介绍:
Colloid Journal (Kolloidnyi Zhurnal) is the only journal in Russia that publishes the results of research in the area of chemical science dealing with the disperse state of matter and surface phenomena in disperse systems. The journal covers experimental and theoretical works on a great variety of colloid and surface phenomena: the structure and properties of interfaces; adsorption phenomena and structure of adsorption layers of surfactants; capillary phenomena; wetting films; wetting and spreading; and detergency. The formation of colloid systems, their molecular-kinetic and optical properties, surface forces, interaction of colloidal particles, stabilization, and criteria of stability loss of different disperse systems (lyosols and aerosols, suspensions, emulsions, foams, and micellar systems) are also topics of the journal. Colloid Journal also includes the phenomena of electro- and diffusiophoresis, electro- and thermoosmosis, and capillary and reverse osmosis, i.e., phenomena dealing with the existence of diffusion layers of molecules and ions in the vicinity of the interface.