周期波导中的时谐麦克斯韦方程组

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
A. Kirsch, B. Schweizer
{"title":"周期波导中的时谐麦克斯韦方程组","authors":"A. Kirsch,&nbsp;B. Schweizer","doi":"10.1007/s00205-025-02099-8","DOIUrl":null,"url":null,"abstract":"<div><p>We study Maxwell’s equations with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and to solve the radiation problem. Furthermore, we characterize the set of all bounded solutions to the homogeneous problem. The case of a compact perturbation of the medium is included, and the scattering problem and the limiting absorption principle are discussed.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"249 3","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00205-025-02099-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Time-Harmonic Maxwell’s Equations in Periodic Waveguides\",\"authors\":\"A. Kirsch,&nbsp;B. Schweizer\",\"doi\":\"10.1007/s00205-025-02099-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study Maxwell’s equations with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and to solve the radiation problem. Furthermore, we characterize the set of all bounded solutions to the homogeneous problem. The case of a compact perturbation of the medium is included, and the scattering problem and the limiting absorption principle are discussed.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"249 3\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00205-025-02099-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-025-02099-8\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-025-02099-8","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究了封闭波导中具有周期系数的麦克斯韦方程组。用泛函解析的方法来表述和求解辐射问题。进一步,我们刻画了齐次问题的所有有界解的集合。讨论了介质紧摄动的散射问题和极限吸收原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-Harmonic Maxwell’s Equations in Periodic Waveguides

We study Maxwell’s equations with periodic coefficients in a closed waveguide. A functional analytic approach is used to formulate and to solve the radiation problem. Furthermore, we characterize the set of all bounded solutions to the homogeneous problem. The case of a compact perturbation of the medium is included, and the scattering problem and the limiting absorption principle are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信