子群图包含一个大次顶点的有限群

IF 0.5 4区 数学 Q3 MATHEMATICS
Marius Tărnăuceanu
{"title":"子群图包含一个大次顶点的有限群","authors":"Marius Tărnăuceanu","doi":"10.1007/s00013-025-02121-1","DOIUrl":null,"url":null,"abstract":"<div><p>Burness and Scott (J Aust Math Soc 87:329-357, 2009) classified finite groups <i>G</i> such that the number of prime order subgroups of <i>G</i> is greater than <span>\\(|G|/2-1\\)</span>. In this note, we study finite groups <i>G</i> whose subgroup graph contains a vertex of degree greater than <span>\\(|G|/2-1\\)</span>. The classification given for finite solvable groups extends the work of Burness and Scott.</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 5","pages":"475 - 484"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00013-025-02121-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Finite groups whose subgroup graph contains a vertex of large degree\",\"authors\":\"Marius Tărnăuceanu\",\"doi\":\"10.1007/s00013-025-02121-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Burness and Scott (J Aust Math Soc 87:329-357, 2009) classified finite groups <i>G</i> such that the number of prime order subgroups of <i>G</i> is greater than <span>\\\\(|G|/2-1\\\\)</span>. In this note, we study finite groups <i>G</i> whose subgroup graph contains a vertex of degree greater than <span>\\\\(|G|/2-1\\\\)</span>. The classification given for finite solvable groups extends the work of Burness and Scott.</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 5\",\"pages\":\"475 - 484\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00013-025-02121-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02121-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02121-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Burness和Scott (J Aust Math Soc 87:329-357, 2009)对有限群G进行了分类,使得G的素阶子群的个数大于\(|G|/2-1\)。本文研究子群图中包含一个度大于\(|G|/2-1\)的顶点的有限群G。有限可解群的分类扩展了Burness和Scott的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite groups whose subgroup graph contains a vertex of large degree

Burness and Scott (J Aust Math Soc 87:329-357, 2009) classified finite groups G such that the number of prime order subgroups of G is greater than \(|G|/2-1\). In this note, we study finite groups G whose subgroup graph contains a vertex of degree greater than \(|G|/2-1\). The classification given for finite solvable groups extends the work of Burness and Scott.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Archiv der Mathematik
Archiv der Mathematik 数学-数学
CiteScore
1.10
自引率
0.00%
发文量
117
审稿时长
4-8 weeks
期刊介绍: Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信