{"title":"平稳三维Navier-Stokes方程的两个改进的各向异性Liouville型定理","authors":"Zhibing Zhang, Qian Zu","doi":"10.1007/s00013-025-02106-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we establish two new anisotropic Liouville type theorems for the stationary 3D Navier–Stokes equations. Under certain anisotropic integrability conditions on the components of the velocity, we show that the solution is trivial. Our results extend and improve the results of Chae (Appl Math Lett 142:108655, 2023) and Luo and Yin (Arch Ration Mech Anal 224:209–231, 2017).</p></div>","PeriodicalId":8346,"journal":{"name":"Archiv der Mathematik","volume":"124 5","pages":"571 - 582"},"PeriodicalIF":0.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two improved anisotropic Liouville type theorems for the stationary 3D Navier–Stokes equations\",\"authors\":\"Zhibing Zhang, Qian Zu\",\"doi\":\"10.1007/s00013-025-02106-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we establish two new anisotropic Liouville type theorems for the stationary 3D Navier–Stokes equations. Under certain anisotropic integrability conditions on the components of the velocity, we show that the solution is trivial. Our results extend and improve the results of Chae (Appl Math Lett 142:108655, 2023) and Luo and Yin (Arch Ration Mech Anal 224:209–231, 2017).</p></div>\",\"PeriodicalId\":8346,\"journal\":{\"name\":\"Archiv der Mathematik\",\"volume\":\"124 5\",\"pages\":\"571 - 582\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archiv der Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00013-025-02106-0\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archiv der Mathematik","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00013-025-02106-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文建立了平稳三维Navier-Stokes方程的两个新的各向异性Liouville型定理。在速度分量的各向异性可积条件下,我们证明了解是平凡的。我们的结果扩展并改进了Chae (applied Math Lett 142:108655, 2023)和Luo和Yin (Arch Ration Mech Anal 224:209-231, 2017)的结果。
Two improved anisotropic Liouville type theorems for the stationary 3D Navier–Stokes equations
In this paper, we establish two new anisotropic Liouville type theorems for the stationary 3D Navier–Stokes equations. Under certain anisotropic integrability conditions on the components of the velocity, we show that the solution is trivial. Our results extend and improve the results of Chae (Appl Math Lett 142:108655, 2023) and Luo and Yin (Arch Ration Mech Anal 224:209–231, 2017).
期刊介绍:
Archiv der Mathematik (AdM) publishes short high quality research papers in every area of mathematics which are not overly technical in nature and addressed to a broad readership.