野外面部表情识别:一种新的自适应注意调制上下文空间信息网络

IF 4 3区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xue Li , Chunhua Zhu , Shuzhi Yang
{"title":"野外面部表情识别:一种新的自适应注意调制上下文空间信息网络","authors":"Xue Li ,&nbsp;Chunhua Zhu ,&nbsp;Shuzhi Yang","doi":"10.1016/j.compeleceng.2025.110258","DOIUrl":null,"url":null,"abstract":"<div><div>Facial expression recognition (FER) is an important and widely applied task. This paper proposes an Adaptive Attention-modulated Contextual Spatial Information (Ad-ACSI) model to improve FER in uncontrolled environments. The proposed Ad-ACSI model incorporates an Attention-modulated Contextual Spatial Information Network (ACSI-Net), a joint loss, and an adaptive attention modulator (AAM). The ACSI-Net, built on ResNet with contextual convolution (CoConv) and coordinated attention (CA), effectively captures global and local contextual features. The adaptive attention modulator (AAM) refines the features and generates dynamic weights for the center loss. The cross-entropy (CE) loss is refined into an equilibrium loss and combined with a sparse center loss to improve inter-class discrimination and intra-class clustering. Experiments on the RAF-DB and AffectNet datasets show that the proposed method achieves results comparable to state-of-the-art methods of FER in the wild, with it promising for integration into popular architectures.</div></div>","PeriodicalId":50630,"journal":{"name":"Computers & Electrical Engineering","volume":"124 ","pages":"Article 110258"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facial expression recognition in the wild: A new Adaptive Attention-Modulated Contextual Spatial Information network\",\"authors\":\"Xue Li ,&nbsp;Chunhua Zhu ,&nbsp;Shuzhi Yang\",\"doi\":\"10.1016/j.compeleceng.2025.110258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Facial expression recognition (FER) is an important and widely applied task. This paper proposes an Adaptive Attention-modulated Contextual Spatial Information (Ad-ACSI) model to improve FER in uncontrolled environments. The proposed Ad-ACSI model incorporates an Attention-modulated Contextual Spatial Information Network (ACSI-Net), a joint loss, and an adaptive attention modulator (AAM). The ACSI-Net, built on ResNet with contextual convolution (CoConv) and coordinated attention (CA), effectively captures global and local contextual features. The adaptive attention modulator (AAM) refines the features and generates dynamic weights for the center loss. The cross-entropy (CE) loss is refined into an equilibrium loss and combined with a sparse center loss to improve inter-class discrimination and intra-class clustering. Experiments on the RAF-DB and AffectNet datasets show that the proposed method achieves results comparable to state-of-the-art methods of FER in the wild, with it promising for integration into popular architectures.</div></div>\",\"PeriodicalId\":50630,\"journal\":{\"name\":\"Computers & Electrical Engineering\",\"volume\":\"124 \",\"pages\":\"Article 110258\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Electrical Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045790625002010\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Electrical Engineering","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045790625002010","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

面部表情识别(FER)是一项重要且应用广泛的任务。本文提出了一种自适应注意调制上下文空间信息(Ad-ACSI)模型,以提高非受控环境下的记忆能力。提出的Ad-ACSI模型包含一个注意调制上下文空间信息网络(ACSI-Net)、一个联合损失和一个自适应注意调制器(AAM)。ACSI-Net建立在ResNet的基础上,具有上下文卷积(CoConv)和协调注意(CA),可以有效地捕获全局和局部上下文特征。自适应注意力调制器(AAM)对中心损失特征进行细化,生成动态权值。将交叉熵损失细化为平衡损失,并结合稀疏中心损失,提高了类间判别和类内聚类。在RAF-DB和AffectNet数据集上的实验表明,所提出的方法在野外达到了与最先进的FER方法相当的结果,并且有望集成到流行的体系结构中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Facial expression recognition in the wild: A new Adaptive Attention-Modulated Contextual Spatial Information network
Facial expression recognition (FER) is an important and widely applied task. This paper proposes an Adaptive Attention-modulated Contextual Spatial Information (Ad-ACSI) model to improve FER in uncontrolled environments. The proposed Ad-ACSI model incorporates an Attention-modulated Contextual Spatial Information Network (ACSI-Net), a joint loss, and an adaptive attention modulator (AAM). The ACSI-Net, built on ResNet with contextual convolution (CoConv) and coordinated attention (CA), effectively captures global and local contextual features. The adaptive attention modulator (AAM) refines the features and generates dynamic weights for the center loss. The cross-entropy (CE) loss is refined into an equilibrium loss and combined with a sparse center loss to improve inter-class discrimination and intra-class clustering. Experiments on the RAF-DB and AffectNet datasets show that the proposed method achieves results comparable to state-of-the-art methods of FER in the wild, with it promising for integration into popular architectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Electrical Engineering
Computers & Electrical Engineering 工程技术-工程:电子与电气
CiteScore
9.20
自引率
7.00%
发文量
661
审稿时长
47 days
期刊介绍: The impact of computers has nowhere been more revolutionary than in electrical engineering. The design, analysis, and operation of electrical and electronic systems are now dominated by computers, a transformation that has been motivated by the natural ease of interface between computers and electrical systems, and the promise of spectacular improvements in speed and efficiency. Published since 1973, Computers & Electrical Engineering provides rapid publication of topical research into the integration of computer technology and computational techniques with electrical and electronic systems. The journal publishes papers featuring novel implementations of computers and computational techniques in areas like signal and image processing, high-performance computing, parallel processing, and communications. Special attention will be paid to papers describing innovative architectures, algorithms, and software tools.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信