{"title":"具有外部扰动的机器人机械臂无速度任务空间调节器","authors":"Haiwen Wu , Bayu Jayawardhana , Dabo Xu","doi":"10.1016/j.automatica.2025.112294","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the problem of task-space robust regulation of robot manipulators subject to external disturbances. A velocity-free control law is proposed by combining the internal model principle and the passivity-based output-feedback control approach. The resulting controller not only ensures asymptotic convergence of the regulation error but also rejects unwanted external sinusoidal disturbances. The potential of the proposed method lies in its simplicity, intuitiveness, and straightforward gain selection criteria for the synthesis of multi-joint robot manipulator control systems.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"177 ","pages":"Article 112294"},"PeriodicalIF":4.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Velocity-free task-space regulator for robot manipulators with external disturbances\",\"authors\":\"Haiwen Wu , Bayu Jayawardhana , Dabo Xu\",\"doi\":\"10.1016/j.automatica.2025.112294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the problem of task-space robust regulation of robot manipulators subject to external disturbances. A velocity-free control law is proposed by combining the internal model principle and the passivity-based output-feedback control approach. The resulting controller not only ensures asymptotic convergence of the regulation error but also rejects unwanted external sinusoidal disturbances. The potential of the proposed method lies in its simplicity, intuitiveness, and straightforward gain selection criteria for the synthesis of multi-joint robot manipulator control systems.</div></div>\",\"PeriodicalId\":55413,\"journal\":{\"name\":\"Automatica\",\"volume\":\"177 \",\"pages\":\"Article 112294\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Automatica\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0005109825001864\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825001864","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Velocity-free task-space regulator for robot manipulators with external disturbances
This paper addresses the problem of task-space robust regulation of robot manipulators subject to external disturbances. A velocity-free control law is proposed by combining the internal model principle and the passivity-based output-feedback control approach. The resulting controller not only ensures asymptotic convergence of the regulation error but also rejects unwanted external sinusoidal disturbances. The potential of the proposed method lies in its simplicity, intuitiveness, and straightforward gain selection criteria for the synthesis of multi-joint robot manipulator control systems.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.