{"title":"基于Malatya中心性和序列独立集的图着色问题鲁棒高效算法","authors":"Selman Yakut","doi":"10.1016/j.eij.2025.100676","DOIUrl":null,"url":null,"abstract":"<div><div>The Graph Coloring Problem (GCP) is an NP-hard problem that aims to color the vertices of a graph using the minimum number of distinct colors, ensuring that adjacent vertices do not share the same color. GCP is widely applied in real-world scenarios and graph theory problems. Despite numerous studies on solving GCP, existing methods face limitations, often performing well on specific graph types but failing to deliver efficient solutions across diverse structures. This study introduces the Malatya Sequent Independent Set Coloring Algorithm as an effective solution for GCP. The algorithm utilizes the Malatya Centrality Algorithm to compute Malatya Centrality (MC) values for graph vertices, where an MC value is defined as the sum of the ratios of a vertex’s degree to its neighbors’ degrees. The algorithm selects the vertex with the lowest MC value, adds it to an independent set, and removes it along with its neighbors and edges. This process repeats until the first sequent independent set is identified. The removed set is then excluded from the original graph, and the process continues on the remaining structure to determine additional sequent independent sets, ensuring that each set corresponds to a single color group in GCP. The algorithm was tested on social network graphs, random graphs, and benchmark datasets, supported by mathematical analyses and proofs. The results confirm that the algorithm provides efficient, polynomial-time solutions for GCP and maintains high performance across various graph types, independent of constraints.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"30 ","pages":"Article 100676"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A robust and efficient algorithm for graph coloring problem based on Malatya centrality and sequent independent sets\",\"authors\":\"Selman Yakut\",\"doi\":\"10.1016/j.eij.2025.100676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Graph Coloring Problem (GCP) is an NP-hard problem that aims to color the vertices of a graph using the minimum number of distinct colors, ensuring that adjacent vertices do not share the same color. GCP is widely applied in real-world scenarios and graph theory problems. Despite numerous studies on solving GCP, existing methods face limitations, often performing well on specific graph types but failing to deliver efficient solutions across diverse structures. This study introduces the Malatya Sequent Independent Set Coloring Algorithm as an effective solution for GCP. The algorithm utilizes the Malatya Centrality Algorithm to compute Malatya Centrality (MC) values for graph vertices, where an MC value is defined as the sum of the ratios of a vertex’s degree to its neighbors’ degrees. The algorithm selects the vertex with the lowest MC value, adds it to an independent set, and removes it along with its neighbors and edges. This process repeats until the first sequent independent set is identified. The removed set is then excluded from the original graph, and the process continues on the remaining structure to determine additional sequent independent sets, ensuring that each set corresponds to a single color group in GCP. The algorithm was tested on social network graphs, random graphs, and benchmark datasets, supported by mathematical analyses and proofs. The results confirm that the algorithm provides efficient, polynomial-time solutions for GCP and maintains high performance across various graph types, independent of constraints.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"30 \",\"pages\":\"Article 100676\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866525000696\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866525000696","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A robust and efficient algorithm for graph coloring problem based on Malatya centrality and sequent independent sets
The Graph Coloring Problem (GCP) is an NP-hard problem that aims to color the vertices of a graph using the minimum number of distinct colors, ensuring that adjacent vertices do not share the same color. GCP is widely applied in real-world scenarios and graph theory problems. Despite numerous studies on solving GCP, existing methods face limitations, often performing well on specific graph types but failing to deliver efficient solutions across diverse structures. This study introduces the Malatya Sequent Independent Set Coloring Algorithm as an effective solution for GCP. The algorithm utilizes the Malatya Centrality Algorithm to compute Malatya Centrality (MC) values for graph vertices, where an MC value is defined as the sum of the ratios of a vertex’s degree to its neighbors’ degrees. The algorithm selects the vertex with the lowest MC value, adds it to an independent set, and removes it along with its neighbors and edges. This process repeats until the first sequent independent set is identified. The removed set is then excluded from the original graph, and the process continues on the remaining structure to determine additional sequent independent sets, ensuring that each set corresponds to a single color group in GCP. The algorithm was tested on social network graphs, random graphs, and benchmark datasets, supported by mathematical analyses and proofs. The results confirm that the algorithm provides efficient, polynomial-time solutions for GCP and maintains high performance across various graph types, independent of constraints.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.