{"title":"关于相对化柴廷的Ω的更多结果","authors":"Liang Yu","doi":"10.1016/j.apal.2025.103586","DOIUrl":null,"url":null,"abstract":"<div><div>We prove that, assuming ZF, and restricted to any <span><math><msub><mrow><mo>≤</mo></mrow><mrow><mi>T</mi></mrow></msub></math></span>-pointed set, Chaitin's <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>:</mo><mi>x</mi><mo>↦</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>U</mi></mrow><mrow><mi>x</mi></mrow></msubsup><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><msup><mrow><mi>U</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>(</mo><mi>σ</mi><mo>)</mo><mo>↓</mo></mrow></msub><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mo>|</mo><mi>σ</mi><mo>|</mo></mrow></msup></math></span> is not injective for any universal prefix-free Turing machine <em>U</em>, and that <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>U</mi></mrow><mrow><mi>x</mi></mrow></msubsup></math></span> fails to be degree invariant in a very strong sense, answering several recent questions in descriptive set theory. Moreover, we show that under <span><math><mrow><mi>ZF</mi></mrow><mo>+</mo><mrow><mi>AD</mi></mrow></math></span>, every function <em>f</em> mapping <em>x</em> to <em>x</em>-random must be uncountable-to-one over an upper cone of Turing degrees.</div></div>","PeriodicalId":50762,"journal":{"name":"Annals of Pure and Applied Logic","volume":"176 8","pages":"Article 103586"},"PeriodicalIF":0.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some more results on relativized Chaitin's Ω\",\"authors\":\"Liang Yu\",\"doi\":\"10.1016/j.apal.2025.103586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We prove that, assuming ZF, and restricted to any <span><math><msub><mrow><mo>≤</mo></mrow><mrow><mi>T</mi></mrow></msub></math></span>-pointed set, Chaitin's <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>U</mi></mrow></msub><mo>:</mo><mi>x</mi><mo>↦</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>U</mi></mrow><mrow><mi>x</mi></mrow></msubsup><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><msup><mrow><mi>U</mi></mrow><mrow><mi>x</mi></mrow></msup><mo>(</mo><mi>σ</mi><mo>)</mo><mo>↓</mo></mrow></msub><msup><mrow><mn>2</mn></mrow><mrow><mo>−</mo><mo>|</mo><mi>σ</mi><mo>|</mo></mrow></msup></math></span> is not injective for any universal prefix-free Turing machine <em>U</em>, and that <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>U</mi></mrow><mrow><mi>x</mi></mrow></msubsup></math></span> fails to be degree invariant in a very strong sense, answering several recent questions in descriptive set theory. Moreover, we show that under <span><math><mrow><mi>ZF</mi></mrow><mo>+</mo><mrow><mi>AD</mi></mrow></math></span>, every function <em>f</em> mapping <em>x</em> to <em>x</em>-random must be uncountable-to-one over an upper cone of Turing degrees.</div></div>\",\"PeriodicalId\":50762,\"journal\":{\"name\":\"Annals of Pure and Applied Logic\",\"volume\":\"176 8\",\"pages\":\"Article 103586\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Pure and Applied Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168007225000351\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Pure and Applied Logic","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168007225000351","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,假设 ZF,并限制于任何 ≤T 点集,柴廷的ΩU:x↦ΩUx=∑Ux(σ)↓2-|σ| 对于任何通用无前缀图灵机 U 都不是注入式的,并且ΩUx 在非常强的意义上不具有度不变性,这回答了描述集合论中最近的几个问题。此外,我们还证明了在 ZF+AD 下,映射 x 到 x-random 的每个函数 f 都必须在图灵度的上锥上是不可数到一的。
We prove that, assuming ZF, and restricted to any -pointed set, Chaitin's is not injective for any universal prefix-free Turing machine U, and that fails to be degree invariant in a very strong sense, answering several recent questions in descriptive set theory. Moreover, we show that under , every function f mapping x to x-random must be uncountable-to-one over an upper cone of Turing degrees.
期刊介绍:
The journal Annals of Pure and Applied Logic publishes high quality papers in all areas of mathematical logic as well as applications of logic in mathematics, in theoretical computer science and in other related disciplines. All submissions to the journal should be mathematically correct, well written (preferably in English)and contain relevant new results that are of significant interest to a substantial number of logicians. The journal also considers submissions that are somewhat too long to be published by other journals while being too short to form a separate memoir provided that they are of particular outstanding quality and broad interest. In addition, Annals of Pure and Applied Logic occasionally publishes special issues of selected papers from well-chosen conferences in pure and applied logic.