组合瓶颈问题下容差的计算

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Gerold Jäger , Marcel Turkensteen
{"title":"组合瓶颈问题下容差的计算","authors":"Gerold Jäger ,&nbsp;Marcel Turkensteen","doi":"10.1016/j.disopt.2025.100887","DOIUrl":null,"url":null,"abstract":"<div><div>This paper considers the computation of lower tolerances of combinatorial optimization problems with an objective of type bottleneck, in which the objective is to minimize the element with maximum cost of a feasible solution. A lower tolerance can be defined as the supremum decrease such that the objective value remains the same. We develop a computational approach for generic problems with objective of type bottleneck and two specific approaches for the Linear Bottleneck Assignment Problem and the Bottleneck Shortest Path Problem, which have a similar complexity as solution approaches for these two problems. Finally, we present some experimental results on random instances for these problems.</div></div>","PeriodicalId":50571,"journal":{"name":"Discrete Optimization","volume":"56 ","pages":"Article 100887"},"PeriodicalIF":0.9000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation of lower tolerances of combinatorial bottleneck problems\",\"authors\":\"Gerold Jäger ,&nbsp;Marcel Turkensteen\",\"doi\":\"10.1016/j.disopt.2025.100887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper considers the computation of lower tolerances of combinatorial optimization problems with an objective of type bottleneck, in which the objective is to minimize the element with maximum cost of a feasible solution. A lower tolerance can be defined as the supremum decrease such that the objective value remains the same. We develop a computational approach for generic problems with objective of type bottleneck and two specific approaches for the Linear Bottleneck Assignment Problem and the Bottleneck Shortest Path Problem, which have a similar complexity as solution approaches for these two problems. Finally, we present some experimental results on random instances for these problems.</div></div>\",\"PeriodicalId\":50571,\"journal\":{\"name\":\"Discrete Optimization\",\"volume\":\"56 \",\"pages\":\"Article 100887\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572528625000106\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Optimization","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572528625000106","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑的是目标为瓶颈类型的组合优化问题的下公差计算,其中目标是最小化可行解中成本最大的元素。下限公差可定义为目标值保持不变的至高减小值。我们为具有瓶颈类型目标的一般问题开发了一种计算方法,并为线性瓶颈分配问题和瓶颈最短路径问题开发了两种具体方法,这两种方法与这两个问题的求解方法具有相似的复杂性。最后,我们介绍了这些问题在随机实例上的一些实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computation of lower tolerances of combinatorial bottleneck problems
This paper considers the computation of lower tolerances of combinatorial optimization problems with an objective of type bottleneck, in which the objective is to minimize the element with maximum cost of a feasible solution. A lower tolerance can be defined as the supremum decrease such that the objective value remains the same. We develop a computational approach for generic problems with objective of type bottleneck and two specific approaches for the Linear Bottleneck Assignment Problem and the Bottleneck Shortest Path Problem, which have a similar complexity as solution approaches for these two problems. Finally, we present some experimental results on random instances for these problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Optimization
Discrete Optimization 管理科学-应用数学
CiteScore
2.10
自引率
9.10%
发文量
30
审稿时长
>12 weeks
期刊介绍: Discrete Optimization publishes research papers on the mathematical, computational and applied aspects of all areas of integer programming and combinatorial optimization. In addition to reports on mathematical results pertinent to discrete optimization, the journal welcomes submissions on algorithmic developments, computational experiments, and novel applications (in particular, large-scale and real-time applications). The journal also publishes clearly labelled surveys, reviews, short notes, and open problems. Manuscripts submitted for possible publication to Discrete Optimization should report on original research, should not have been previously published, and should not be under consideration for publication by any other journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信