具有混合网络攻击的离散马尔可夫跳变奇异摄动系统的动态事件触发异步耗散控制

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Deteng Wang , Yanqian Wang , Guangming Zhuang , Jian Chen
{"title":"具有混合网络攻击的离散马尔可夫跳变奇异摄动系统的动态事件触发异步耗散控制","authors":"Deteng Wang ,&nbsp;Yanqian Wang ,&nbsp;Guangming Zhuang ,&nbsp;Jian Chen","doi":"10.1016/j.jfranklin.2025.107668","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the issue regarding asynchronous dissipative controller for a type of discrete-time Markov jump singularly perturbed systems (MJSPSs) with hybrid cyber attacks. To further alleviate the transmission burden on the communication network, dynamic event-triggering rules are proposed. Considering the impact of both deception attacks and denial-of-service (DoS) attacks on the discussed discrete-time MJSPSs, a novel hybrid cyber attacks model is initially constructed to consolidate these two types of attacks. An asynchronous controller is well constructed considering the mode information of Markov chain is exceedingly hard to obtain. Consequently, a hidden Markov model (HMM) is proposed to formulate the asynchronous situation between modes of the original Markov chain and the constructed asynchronous controller. By constructing the Lyapunov-Krasovskii functional concerning the singular perturbation parameter (SPP), sufficient criteria of achieving stochastic stability with a specific dissipative performance for the closed-loop MJSPSs are secured. Subsequently, the design methodology of non-synchronous controller and the dynamic event-triggering rules are furnished in a systematical way. Eventually, the superiority of the proffered mechanism is demonstrated by an ameliorative DC motor mathematical model.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 8","pages":"Article 107668"},"PeriodicalIF":3.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic event-triggering asynchronous dissipative control for discrete-time Markov jump singularly perturbed systems with hybrid cyber attacks\",\"authors\":\"Deteng Wang ,&nbsp;Yanqian Wang ,&nbsp;Guangming Zhuang ,&nbsp;Jian Chen\",\"doi\":\"10.1016/j.jfranklin.2025.107668\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper addresses the issue regarding asynchronous dissipative controller for a type of discrete-time Markov jump singularly perturbed systems (MJSPSs) with hybrid cyber attacks. To further alleviate the transmission burden on the communication network, dynamic event-triggering rules are proposed. Considering the impact of both deception attacks and denial-of-service (DoS) attacks on the discussed discrete-time MJSPSs, a novel hybrid cyber attacks model is initially constructed to consolidate these two types of attacks. An asynchronous controller is well constructed considering the mode information of Markov chain is exceedingly hard to obtain. Consequently, a hidden Markov model (HMM) is proposed to formulate the asynchronous situation between modes of the original Markov chain and the constructed asynchronous controller. By constructing the Lyapunov-Krasovskii functional concerning the singular perturbation parameter (SPP), sufficient criteria of achieving stochastic stability with a specific dissipative performance for the closed-loop MJSPSs are secured. Subsequently, the design methodology of non-synchronous controller and the dynamic event-triggering rules are furnished in a systematical way. Eventually, the superiority of the proffered mechanism is demonstrated by an ameliorative DC motor mathematical model.</div></div>\",\"PeriodicalId\":17283,\"journal\":{\"name\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"volume\":\"362 8\",\"pages\":\"Article 107668\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Franklin Institute-engineering and Applied Mathematics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016003225001620\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003225001620","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类具有混合网络攻击的离散马尔可夫跳变奇异摄动系统的异步耗散控制器问题。为了进一步减轻通信网络的传输负担,提出了动态事件触发规则。考虑到欺骗攻击和拒绝服务(DoS)攻击对所讨论的离散时间mjsp的影响,初步构建了一种新的混合网络攻击模型来整合这两种攻击。考虑到马尔可夫链的模式信息难以获取,构造了一种很好的异步控制器。因此,提出隐马尔可夫模型(HMM)来描述原马尔可夫链的模式与所构造的异步控制器之间的异步情况。通过构造关于奇异扰动参数(SPP)的Lyapunov-Krasovskii泛函,获得了闭环MJSPSs具有特定耗散性能的随机稳定性的充分判据。随后,系统地给出了非同步控制器的设计方法和动态事件触发规则。最后,通过改进的直流电机数学模型证明了所提供机构的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic event-triggering asynchronous dissipative control for discrete-time Markov jump singularly perturbed systems with hybrid cyber attacks
This paper addresses the issue regarding asynchronous dissipative controller for a type of discrete-time Markov jump singularly perturbed systems (MJSPSs) with hybrid cyber attacks. To further alleviate the transmission burden on the communication network, dynamic event-triggering rules are proposed. Considering the impact of both deception attacks and denial-of-service (DoS) attacks on the discussed discrete-time MJSPSs, a novel hybrid cyber attacks model is initially constructed to consolidate these two types of attacks. An asynchronous controller is well constructed considering the mode information of Markov chain is exceedingly hard to obtain. Consequently, a hidden Markov model (HMM) is proposed to formulate the asynchronous situation between modes of the original Markov chain and the constructed asynchronous controller. By constructing the Lyapunov-Krasovskii functional concerning the singular perturbation parameter (SPP), sufficient criteria of achieving stochastic stability with a specific dissipative performance for the closed-loop MJSPSs are secured. Subsequently, the design methodology of non-synchronous controller and the dynamic event-triggering rules are furnished in a systematical way. Eventually, the superiority of the proffered mechanism is demonstrated by an ameliorative DC motor mathematical model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信