Chuhui Huang, Kate S. Harris, Ghizal Siddiqui and Manuela Jörg*,
{"title":"推荐的工具化合物:噻吩三唑二氮卓类衍生物化学探针靶BET溴域","authors":"Chuhui Huang, Kate S. Harris, Ghizal Siddiqui and Manuela Jörg*, ","doi":"10.1021/acsptsci.4c0072610.1021/acsptsci.4c00726","DOIUrl":null,"url":null,"abstract":"<p >Thienotriazolodiazepines, including (+)-JQ1 (<b>4</b>), are well-known inhibitors of the bromodomain (BD) and extra-terminal domain (BET) family of proteins. Despite the suboptimal physicochemical properties as a drug candidate, such as poor solubility and half-life, (+)-JQ1 (<b>4</b>) has proven as an effective chemical probe with high target potency and selectivity. (+)-JQ1 (<b>4</b>) and (+)-JQ1-derived chemical probes have played a vital role in chemical biology and drug discovery over the past decade, which is demonstrated by the high number of impactful research studies published since the disclosure of (+)-JQ1 (<b>4)</b> in 2010. In this review, we discuss the development of (+)-JQ1-derivatized chemical probes over the past decade and their significant contribution to scientific research. Specifically, we will summarize the development of innovative label-free and labeled (+)-JQ1-derivatized chemical probes, such as bivalent, covalent, and photoaffinity probes as well as protein degraders, with a focus on the design of these chemical probes.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 4","pages":"978–1012 978–1012"},"PeriodicalIF":4.9000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00726","citationCount":"0","resultStr":"{\"title\":\"Recommended Tool Compounds: Thienotriazolodiazepines-Derivatized Chemical Probes to Target BET Bromodomains\",\"authors\":\"Chuhui Huang, Kate S. Harris, Ghizal Siddiqui and Manuela Jörg*, \",\"doi\":\"10.1021/acsptsci.4c0072610.1021/acsptsci.4c00726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Thienotriazolodiazepines, including (+)-JQ1 (<b>4</b>), are well-known inhibitors of the bromodomain (BD) and extra-terminal domain (BET) family of proteins. Despite the suboptimal physicochemical properties as a drug candidate, such as poor solubility and half-life, (+)-JQ1 (<b>4</b>) has proven as an effective chemical probe with high target potency and selectivity. (+)-JQ1 (<b>4</b>) and (+)-JQ1-derived chemical probes have played a vital role in chemical biology and drug discovery over the past decade, which is demonstrated by the high number of impactful research studies published since the disclosure of (+)-JQ1 (<b>4)</b> in 2010. In this review, we discuss the development of (+)-JQ1-derivatized chemical probes over the past decade and their significant contribution to scientific research. Specifically, we will summarize the development of innovative label-free and labeled (+)-JQ1-derivatized chemical probes, such as bivalent, covalent, and photoaffinity probes as well as protein degraders, with a focus on the design of these chemical probes.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"8 4\",\"pages\":\"978–1012 978–1012\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsptsci.4c00726\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsptsci.4c00726\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsptsci.4c00726","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Recommended Tool Compounds: Thienotriazolodiazepines-Derivatized Chemical Probes to Target BET Bromodomains
Thienotriazolodiazepines, including (+)-JQ1 (4), are well-known inhibitors of the bromodomain (BD) and extra-terminal domain (BET) family of proteins. Despite the suboptimal physicochemical properties as a drug candidate, such as poor solubility and half-life, (+)-JQ1 (4) has proven as an effective chemical probe with high target potency and selectivity. (+)-JQ1 (4) and (+)-JQ1-derived chemical probes have played a vital role in chemical biology and drug discovery over the past decade, which is demonstrated by the high number of impactful research studies published since the disclosure of (+)-JQ1 (4) in 2010. In this review, we discuss the development of (+)-JQ1-derivatized chemical probes over the past decade and their significant contribution to scientific research. Specifically, we will summarize the development of innovative label-free and labeled (+)-JQ1-derivatized chemical probes, such as bivalent, covalent, and photoaffinity probes as well as protein degraders, with a focus on the design of these chemical probes.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.