雾霾期气体和颗粒硫同位素同步测量揭示NO2氧化在SO2转化为硫酸盐中的主导作用

Xinxin Feng, Yingjun Chen*, Zeyu Liu, Hongxing Jiang, Yanli Feng and Tian Chen*, 
{"title":"雾霾期气体和颗粒硫同位素同步测量揭示NO2氧化在SO2转化为硫酸盐中的主导作用","authors":"Xinxin Feng,&nbsp;Yingjun Chen*,&nbsp;Zeyu Liu,&nbsp;Hongxing Jiang,&nbsp;Yanli Feng and Tian Chen*,&nbsp;","doi":"10.1021/acsestair.4c0023910.1021/acsestair.4c00239","DOIUrl":null,"url":null,"abstract":"<p >The oxidation pathways of SO<sub>2</sub> conversion to sulfate remain controversial. Sulfur isotope (δ<sup>34</sup>S) has been used to trace the SO<sub>4</sub><sup>2–</sup> formation pathways based on sulfur fractionation. Accurately assessing δ<sup>34</sup>S fractionation is crucial to quantify SO<sub>4</sub><sup>2–</sup> formation pathways. However, previous studies have used particle-phase δ<sup>34</sup>S to estimate δ<sup>34</sup>S fractionation (α<sup>34</sup>S<sub>g→p</sub>-estimated) in SO<sub>4</sub><sup>2–</sup> formation, leading to significant uncertainties. δ<sup>34</sup>S values of gas-to-particle (δ<sup>34</sup>SO<sub>2</sub> and δ<sup>34</sup>SO<sub>4</sub><sup>2–</sup>) were synchronously measured to uncover isotope fractionation (α<sup>34</sup>S<sub>g→p</sub>). Results found that α<sup>34</sup>S<sub>g→p</sub> (−3.7‰ to +9.9‰) obtained by gas-to-particle δ<sup>34</sup>S showed a significant difference with α<sup>34</sup>S<sub>g→p</sub>-estimated(−6.4‰ to +1.4‰) obtained by δ<sup>34</sup>SO<sub>4</sub><sup>2–</sup>, implying different results for SO<sub>4</sub><sup>2–</sup> formation using the two methods. Among them, α<sup>34</sup>S<sub>g→p</sub> results indicated the prominent pathway of NO<sub>2</sub> oxidation (48–56%), while α<sup>34</sup>S<sub>g→p</sub>-estimated suggested the dominant role of transition metal ion (TMI)-catalyzed O<sub>2</sub> (54–80%). Additionally, α<sup>34</sup>S<sub>g→p</sub> results show a more reasonable response to SO<sub>4</sub><sup>2–</sup> formation and consistent trends with oxidant concentrations. α<sup>34</sup>S<sub>g→p</sub>-estimated overestimated the TMI-catalyzed O<sub>2</sub> pathway contribution (38–47%) to SO<sub>4</sub><sup>2–</sup> formation. This is the first study to employ gas-to-particle δ<sup>34</sup>S to demonstrate the dominant role of NO<sub>2</sub> oxidation in SO<sub>4</sub><sup>2–</sup> formation. This approach provides new insight into using δ<sup>34</sup>SO<sub>4</sub><sup>2–</sup> for the analysis of SO<sub>4</sub><sup>2–</sup> formation.</p>","PeriodicalId":100014,"journal":{"name":"ACS ES&T Air","volume":"2 4","pages":"498–507 498–507"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominant Role of NO2 Oxidation in SO2 Conversion to Sulfate Revealed by Synchronous Measurements of Gas and Particle Sulfur Isotopes in Haze Episodes\",\"authors\":\"Xinxin Feng,&nbsp;Yingjun Chen*,&nbsp;Zeyu Liu,&nbsp;Hongxing Jiang,&nbsp;Yanli Feng and Tian Chen*,&nbsp;\",\"doi\":\"10.1021/acsestair.4c0023910.1021/acsestair.4c00239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The oxidation pathways of SO<sub>2</sub> conversion to sulfate remain controversial. Sulfur isotope (δ<sup>34</sup>S) has been used to trace the SO<sub>4</sub><sup>2–</sup> formation pathways based on sulfur fractionation. Accurately assessing δ<sup>34</sup>S fractionation is crucial to quantify SO<sub>4</sub><sup>2–</sup> formation pathways. However, previous studies have used particle-phase δ<sup>34</sup>S to estimate δ<sup>34</sup>S fractionation (α<sup>34</sup>S<sub>g→p</sub>-estimated) in SO<sub>4</sub><sup>2–</sup> formation, leading to significant uncertainties. δ<sup>34</sup>S values of gas-to-particle (δ<sup>34</sup>SO<sub>2</sub> and δ<sup>34</sup>SO<sub>4</sub><sup>2–</sup>) were synchronously measured to uncover isotope fractionation (α<sup>34</sup>S<sub>g→p</sub>). Results found that α<sup>34</sup>S<sub>g→p</sub> (−3.7‰ to +9.9‰) obtained by gas-to-particle δ<sup>34</sup>S showed a significant difference with α<sup>34</sup>S<sub>g→p</sub>-estimated(−6.4‰ to +1.4‰) obtained by δ<sup>34</sup>SO<sub>4</sub><sup>2–</sup>, implying different results for SO<sub>4</sub><sup>2–</sup> formation using the two methods. Among them, α<sup>34</sup>S<sub>g→p</sub> results indicated the prominent pathway of NO<sub>2</sub> oxidation (48–56%), while α<sup>34</sup>S<sub>g→p</sub>-estimated suggested the dominant role of transition metal ion (TMI)-catalyzed O<sub>2</sub> (54–80%). Additionally, α<sup>34</sup>S<sub>g→p</sub> results show a more reasonable response to SO<sub>4</sub><sup>2–</sup> formation and consistent trends with oxidant concentrations. α<sup>34</sup>S<sub>g→p</sub>-estimated overestimated the TMI-catalyzed O<sub>2</sub> pathway contribution (38–47%) to SO<sub>4</sub><sup>2–</sup> formation. This is the first study to employ gas-to-particle δ<sup>34</sup>S to demonstrate the dominant role of NO<sub>2</sub> oxidation in SO<sub>4</sub><sup>2–</sup> formation. This approach provides new insight into using δ<sup>34</sup>SO<sub>4</sub><sup>2–</sup> for the analysis of SO<sub>4</sub><sup>2–</sup> formation.</p>\",\"PeriodicalId\":100014,\"journal\":{\"name\":\"ACS ES&T Air\",\"volume\":\"2 4\",\"pages\":\"498–507 498–507\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T Air\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsestair.4c00239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T Air","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsestair.4c00239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二氧化硫转化为硫酸盐的氧化途径仍有争议。硫同位素(δ34S)以硫分馏为基础,追踪了SO42 -的形成途径。准确评估δ34S分馏是量化SO42 -形成途径的关键。然而,以往的研究使用颗粒相δ34S来估算SO42 -形成过程中的δ34S分馏(α34Sg→p-estimated),存在较大的不确定性。同步测定气相-颗粒(δ34SO2和δ34SO42 -)的δ34S值,揭示同位素分馏过程(α34Sg→p)。结果发现,δ34S法得到的α34Sg→p值(−3.7‰~ +9.9‰)与δ34SO42 -法得到的α34Sg→p值(−6.4‰~ +1.4‰)存在显著差异,说明两种方法的SO42 -生成结果不同。其中α34Sg→p结果表明NO2氧化途径占主导地位(48 ~ 56%),α34Sg→p-estimate结果表明过渡金属离子(TMI)催化O2起主导作用(54 ~ 80%)。α34Sg→p对SO42 -形成的响应更为合理,且与氧化剂浓度的变化趋势一致。α34Sg→p-estimate高估了tmi催化O2途径对SO42 -形成的贡献(38-47%)。这是第一个利用气-颗粒δ34S来证明NO2氧化在SO42 -形成中的主导作用的研究。该方法为利用δ34SO42 -分析SO42 -的形成提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Dominant Role of NO2 Oxidation in SO2 Conversion to Sulfate Revealed by Synchronous Measurements of Gas and Particle Sulfur Isotopes in Haze Episodes

Dominant Role of NO2 Oxidation in SO2 Conversion to Sulfate Revealed by Synchronous Measurements of Gas and Particle Sulfur Isotopes in Haze Episodes

The oxidation pathways of SO2 conversion to sulfate remain controversial. Sulfur isotope (δ34S) has been used to trace the SO42– formation pathways based on sulfur fractionation. Accurately assessing δ34S fractionation is crucial to quantify SO42– formation pathways. However, previous studies have used particle-phase δ34S to estimate δ34S fractionation (α34Sg→p-estimated) in SO42– formation, leading to significant uncertainties. δ34S values of gas-to-particle (δ34SO2 and δ34SO42–) were synchronously measured to uncover isotope fractionation (α34Sg→p). Results found that α34Sg→p (−3.7‰ to +9.9‰) obtained by gas-to-particle δ34S showed a significant difference with α34Sg→p-estimated(−6.4‰ to +1.4‰) obtained by δ34SO42–, implying different results for SO42– formation using the two methods. Among them, α34Sg→p results indicated the prominent pathway of NO2 oxidation (48–56%), while α34Sg→p-estimated suggested the dominant role of transition metal ion (TMI)-catalyzed O2 (54–80%). Additionally, α34Sg→p results show a more reasonable response to SO42– formation and consistent trends with oxidant concentrations. α34Sg→p-estimated overestimated the TMI-catalyzed O2 pathway contribution (38–47%) to SO42– formation. This is the first study to employ gas-to-particle δ34S to demonstrate the dominant role of NO2 oxidation in SO42– formation. This approach provides new insight into using δ34SO42– for the analysis of SO42– formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信