非金属尖晶石氧化物第一性原理的表面重建和能带对准

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tianwei Wang, Nobuya Sato, Fumiyasu Oba
{"title":"非金属尖晶石氧化物第一性原理的表面重建和能带对准","authors":"Tianwei Wang, Nobuya Sato, Fumiyasu Oba","doi":"10.1016/j.actamat.2025.121034","DOIUrl":null,"url":null,"abstract":"A systematic prediction of the reconstructed surfaces of non-metallic normal spinel oxides is conducted using a global structure search scheme that combines Bayesian optimisation and the evolutionary algorithm, adopting first principles calculations for local optimisations. Their (100) surfaces with macroscopically stoichiometric and nonpolar terminations are investigated, yielding various representative reconstructed surface geometries for <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;B&lt;/mi&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;3&lt;/mn&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;mn is=\"true\"&gt;4&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -995.6 4751.2 1395\" width=\"11.035ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-41\"></use></g></g><g is=\"true\" transform=\"translate(750,443)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g></g><g is=\"true\" transform=\"translate(1754,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-42\"></use></g><g is=\"true\" transform=\"translate(759,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-33\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g><g is=\"true\" transform=\"translate(759,-308)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g><g is=\"true\" transform=\"translate(3518,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">A</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn><mo is=\"true\">+</mo></mrow></msup><msubsup is=\"true\"><mi is=\"true\">B</mi><mn is=\"true\">2</mn><mrow is=\"true\"><mn is=\"true\">3</mn><mo is=\"true\">+</mo></mrow></msubsup><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mn is=\"true\">4</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">A</mi></mrow><mrow is=\"true\"><mn is=\"true\">2</mn><mo is=\"true\">+</mo></mrow></msup><msubsup is=\"true\"><mi is=\"true\">B</mi><mn is=\"true\">2</mn><mrow is=\"true\"><mn is=\"true\">3</mn><mo is=\"true\">+</mo></mrow></msubsup><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mn is=\"true\">4</mn></msub></mrow></math></script></span>, <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;4&lt;/mn&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;B&lt;/mi&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;mn is=\"true\"&gt;4&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -995.6 4751.2 1395\" width=\"11.035ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-41\"></use></g></g><g is=\"true\" transform=\"translate(750,443)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g></g><g is=\"true\" transform=\"translate(1754,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-42\"></use></g><g is=\"true\" transform=\"translate(759,403)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g><g is=\"true\" transform=\"translate(759,-308)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g><g is=\"true\" transform=\"translate(3518,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">A</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn><mo is=\"true\">+</mo></mrow></msup><msubsup is=\"true\"><mi is=\"true\">B</mi><mn is=\"true\">2</mn><mrow is=\"true\"><mn is=\"true\">2</mn><mo is=\"true\">+</mo></mrow></msubsup><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mn is=\"true\">4</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">A</mi></mrow><mrow is=\"true\"><mn is=\"true\">4</mn><mo is=\"true\">+</mo></mrow></msup><msubsup is=\"true\"><mi is=\"true\">B</mi><mn is=\"true\">2</mn><mrow is=\"true\"><mn is=\"true\">2</mn><mo is=\"true\">+</mo></mrow></msubsup><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mn is=\"true\">4</mn></msub></mrow></math></script></span>, and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mrow is=\"true\"&gt;&lt;msup is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mn is=\"true\"&gt;6&lt;/mn&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msubsup is=\"true\"&gt;&lt;mi is=\"true\"&gt;B&lt;/mi&gt;&lt;mn is=\"true\"&gt;2&lt;/mn&gt;&lt;mo is=\"true\"&gt;+&lt;/mo&gt;&lt;/msubsup&gt;&lt;msub is=\"true\"&gt;&lt;mi mathvariant=\"normal\" is=\"true\"&gt;O&lt;/mi&gt;&lt;mn is=\"true\"&gt;4&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"3.24ex\" role=\"img\" style=\"vertical-align: -0.928ex;\" viewbox=\"0 -995.6 4397.3 1395\" width=\"10.213ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-41\"></use></g></g><g is=\"true\" transform=\"translate(750,443)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-36\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g></g></g><g is=\"true\" transform=\"translate(1754,0)\"><g is=\"true\"><use xlink:href=\"#MJMATHI-42\"></use></g><g is=\"true\" transform=\"translate(759,403)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2B\"></use></g><g is=\"true\" transform=\"translate(759,-308)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-32\"></use></g></g><g is=\"true\" transform=\"translate(3164,0)\"><g is=\"true\"><use xlink:href=\"#MJMAIN-4F\"></use></g><g is=\"true\" transform=\"translate(778,-150)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-34\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">A</mi></mrow><mrow is=\"true\"><mn is=\"true\">6</mn><mo is=\"true\">+</mo></mrow></msup><msubsup is=\"true\"><mi is=\"true\">B</mi><mn is=\"true\">2</mn><mo is=\"true\">+</mo></msubsup><msub is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi><mn is=\"true\">4</mn></msub></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><msup is=\"true\"><mrow is=\"true\"><mi is=\"true\">A</mi></mrow><mrow is=\"true\"><mn is=\"true\">6</mn><mo is=\"true\">+</mo></mrow></msup><msubsup is=\"true\"><mi is=\"true\">B</mi><mn is=\"true\">2</mn><mo is=\"true\">+</mo></msubsup><msub is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi><mn is=\"true\">4</mn></msub></mrow></math></script></span> systems. The competition between <em>A</em> cations on tetrahedral sites and <em>B</em> cations on octahedral sites, in the covalency of their bonds with O ions, emerges as a primary factor that accounts for the observed chemical trends in the formation of distinct reconstructed geometries and their associated surface energies. This covalency competition identifies the key cations that govern the surface reconstruction patterns, with the coordination numbers of surface cations acting as a secondary factor influencing the surface energy. Additionally, the ionic-size effect plays a supplementary role in surface reconstruction to covalency competition, particularly when there is a significant ionic-size difference between <em>A</em> and <em>B</em> cations. The band alignment of these surfaces, determined by calculating their ionisation potentials and electron affinities, is also presented and discussed in relation to the reconstructed geometries. This study offers useful insights into the exposure of cation/anion sites on the reconstructed surfaces of normal spinel oxides that is often relevant to desired surface functionalities, such as those for electrocatalysts and photocatalysts, and provides a framework that can be reasonably generalised to the surface reconstruction of other spinel compounds.","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"4 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface reconstruction and band alignment of non-metallic spinel oxides from first principles\",\"authors\":\"Tianwei Wang, Nobuya Sato, Fumiyasu Oba\",\"doi\":\"10.1016/j.actamat.2025.121034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A systematic prediction of the reconstructed surfaces of non-metallic normal spinel oxides is conducted using a global structure search scheme that combines Bayesian optimisation and the evolutionary algorithm, adopting first principles calculations for local optimisations. Their (100) surfaces with macroscopically stoichiometric and nonpolar terminations are investigated, yielding various representative reconstructed surface geometries for <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;msup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;2&lt;/mn&gt;&lt;mo is=\\\"true\\\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;B&lt;/mi&gt;&lt;mn is=\\\"true\\\"&gt;2&lt;/mn&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;3&lt;/mn&gt;&lt;mo is=\\\"true\\\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;O&lt;/mi&gt;&lt;mn is=\\\"true\\\"&gt;4&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.24ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -995.6 4751.2 1395\\\" width=\\\"11.035ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-41\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(750,443)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2B\\\"></use></g></g></g><g is=\\\"true\\\" transform=\\\"translate(1754,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-42\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,403)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-33\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2B\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(759,-308)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(3518,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(778,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-34\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">A</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">+</mo></mrow></msup><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">B</mi><mn is=\\\"true\\\">2</mn><mrow is=\\\"true\\\"><mn is=\\\"true\\\">3</mn><mo is=\\\"true\\\">+</mo></mrow></msubsup><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi><mn is=\\\"true\\\">4</mn></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">A</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">+</mo></mrow></msup><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">B</mi><mn is=\\\"true\\\">2</mn><mrow is=\\\"true\\\"><mn is=\\\"true\\\">3</mn><mo is=\\\"true\\\">+</mo></mrow></msubsup><msub is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi><mn is=\\\"true\\\">4</mn></msub></mrow></math></script></span>, <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;msup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;4&lt;/mn&gt;&lt;mo is=\\\"true\\\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;B&lt;/mi&gt;&lt;mn is=\\\"true\\\"&gt;2&lt;/mn&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;2&lt;/mn&gt;&lt;mo is=\\\"true\\\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;O&lt;/mi&gt;&lt;mn is=\\\"true\\\"&gt;4&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.24ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -995.6 4751.2 1395\\\" width=\\\"11.035ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-41\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(750,443)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-34\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2B\\\"></use></g></g></g><g is=\\\"true\\\" transform=\\\"translate(1754,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-42\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,403)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2B\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(759,-308)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(3518,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(778,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-34\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">A</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">4</mn><mo is=\\\"true\\\">+</mo></mrow></msup><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">B</mi><mn is=\\\"true\\\">2</mn><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">+</mo></mrow></msubsup><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi><mn is=\\\"true\\\">4</mn></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">A</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">4</mn><mo is=\\\"true\\\">+</mo></mrow></msup><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">B</mi><mn is=\\\"true\\\">2</mn><mrow is=\\\"true\\\"><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">+</mo></mrow></msubsup><msub is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi><mn is=\\\"true\\\">4</mn></msub></mrow></math></script></span>, and <span><span style=\\\"\\\"></span><span data-mathml='&lt;math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;msup is=\\\"true\\\"&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;A&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\\\"true\\\"&gt;&lt;mn is=\\\"true\\\"&gt;6&lt;/mn&gt;&lt;mo is=\\\"true\\\"&gt;+&lt;/mo&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;msubsup is=\\\"true\\\"&gt;&lt;mi is=\\\"true\\\"&gt;B&lt;/mi&gt;&lt;mn is=\\\"true\\\"&gt;2&lt;/mn&gt;&lt;mo is=\\\"true\\\"&gt;+&lt;/mo&gt;&lt;/msubsup&gt;&lt;msub is=\\\"true\\\"&gt;&lt;mi mathvariant=\\\"normal\\\" is=\\\"true\\\"&gt;O&lt;/mi&gt;&lt;mn is=\\\"true\\\"&gt;4&lt;/mn&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"3.24ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.928ex;\\\" viewbox=\\\"0 -995.6 4397.3 1395\\\" width=\\\"10.213ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-41\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(750,443)\\\"><g is=\\\"true\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-36\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(353,0)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2B\\\"></use></g></g></g><g is=\\\"true\\\" transform=\\\"translate(1754,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMATHI-42\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,403)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-2B\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(759,-308)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-32\\\"></use></g></g><g is=\\\"true\\\" transform=\\\"translate(3164,0)\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-4F\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(778,-150)\\\"><use transform=\\\"scale(0.707)\\\" xlink:href=\\\"#MJMAIN-34\\\"></use></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">A</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">6</mn><mo is=\\\"true\\\">+</mo></mrow></msup><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">B</mi><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">+</mo></msubsup><msub is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">O</mi><mn is=\\\"true\\\">4</mn></msub></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><msup is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\">A</mi></mrow><mrow is=\\\"true\\\"><mn is=\\\"true\\\">6</mn><mo is=\\\"true\\\">+</mo></mrow></msup><msubsup is=\\\"true\\\"><mi is=\\\"true\\\">B</mi><mn is=\\\"true\\\">2</mn><mo is=\\\"true\\\">+</mo></msubsup><msub is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">O</mi><mn is=\\\"true\\\">4</mn></msub></mrow></math></script></span> systems. The competition between <em>A</em> cations on tetrahedral sites and <em>B</em> cations on octahedral sites, in the covalency of their bonds with O ions, emerges as a primary factor that accounts for the observed chemical trends in the formation of distinct reconstructed geometries and their associated surface energies. This covalency competition identifies the key cations that govern the surface reconstruction patterns, with the coordination numbers of surface cations acting as a secondary factor influencing the surface energy. Additionally, the ionic-size effect plays a supplementary role in surface reconstruction to covalency competition, particularly when there is a significant ionic-size difference between <em>A</em> and <em>B</em> cations. The band alignment of these surfaces, determined by calculating their ionisation potentials and electron affinities, is also presented and discussed in relation to the reconstructed geometries. This study offers useful insights into the exposure of cation/anion sites on the reconstructed surfaces of normal spinel oxides that is often relevant to desired surface functionalities, such as those for electrocatalysts and photocatalysts, and provides a framework that can be reasonably generalised to the surface reconstruction of other spinel compounds.\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.actamat.2025.121034\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.actamat.2025.121034","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

采用结合贝叶斯优化和进化算法的全局结构搜索方案,采用第一性原理计算进行局部优化,对非金属正常尖晶石氧化物的重构表面进行了系统的预测。研究了它们的(100)个具有宏观化学计量和非极性末端的表面,得到了A2+B23+O4A2+B23+O4, A4+B22+O4A4+B22+O4和A6+B2+O4A6+B2+O4体系的各种具有代表性的重建表面几何形状。四面体位置上的A阳离子和八面体位置上的B阳离子之间的竞争,在它们与O离子的键的共价中,成为解释观察到的不同重构几何形状及其相关表面能形成的化学趋势的主要因素。这种共价竞争确定了控制表面重构模式的关键阳离子,而表面阳离子的配位数是影响表面能的次要因素。此外,离子尺寸效应在共价竞争的表面重建中起着补充作用,特别是当a和B阳离子之间存在显著的离子尺寸差异时。通过计算它们的电离势和电子亲和力来确定这些表面的带对准,也提出并讨论了与重建几何形状的关系。本研究对正常尖晶石氧化物重建表面上的阳离子/阴离子位点暴露提供了有用的见解,这通常与所需的表面功能(如电催化剂和光催化剂)有关,并提供了一个框架,可以合理地推广到其他尖晶石化合物的表面重建。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface reconstruction and band alignment of non-metallic spinel oxides from first principles

Surface reconstruction and band alignment of non-metallic spinel oxides from first principles
A systematic prediction of the reconstructed surfaces of non-metallic normal spinel oxides is conducted using a global structure search scheme that combines Bayesian optimisation and the evolutionary algorithm, adopting first principles calculations for local optimisations. Their (100) surfaces with macroscopically stoichiometric and nonpolar terminations are investigated, yielding various representative reconstructed surface geometries for A2+B23+O4, A4+B22+O4, and A6+B2+O4 systems. The competition between A cations on tetrahedral sites and B cations on octahedral sites, in the covalency of their bonds with O ions, emerges as a primary factor that accounts for the observed chemical trends in the formation of distinct reconstructed geometries and their associated surface energies. This covalency competition identifies the key cations that govern the surface reconstruction patterns, with the coordination numbers of surface cations acting as a secondary factor influencing the surface energy. Additionally, the ionic-size effect plays a supplementary role in surface reconstruction to covalency competition, particularly when there is a significant ionic-size difference between A and B cations. The band alignment of these surfaces, determined by calculating their ionisation potentials and electron affinities, is also presented and discussed in relation to the reconstructed geometries. This study offers useful insights into the exposure of cation/anion sites on the reconstructed surfaces of normal spinel oxides that is often relevant to desired surface functionalities, such as those for electrocatalysts and photocatalysts, and provides a framework that can be reasonably generalised to the surface reconstruction of other spinel compounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信