用于乳腺超声图像细粒度分类的三重形态学特征注意网络。

Dongyue Wang, Min Xue, Hui Wang
{"title":"用于乳腺超声图像细粒度分类的三重形态学特征注意网络。","authors":"Dongyue Wang, Min Xue, Hui Wang","doi":"10.1007/s10278-025-01496-5","DOIUrl":null,"url":null,"abstract":"<p><p>Accurately diagnosing various types of breast lesions is critical for assessing breast cancer risk and predicting patient outcomes, which necessitates a fine-grained classification approach. While convolutional neural networks (CNNs) are predominantly employed in fine-grained classification tasks for breast lesions, they often struggle to effectively capture and model the intricate relationships between local and global features, an aspect that is vital for achieving high classification accuracy. Additionally, Color Doppler Flow Imaging (CDFI) and Strain Elastography (SE) are two important ultrasound imaging techniques widely used in the diagnosis of breast lesions. However, their specific contributions to fine-grained classification have not been thoroughly investigated. In this paper, we introduce a Triple Morphological Feature Attention Network (TMAN) designed to enhance fine-grained classification of breast ultrasound images. The TMAN architecture comprises three key modules: Local Margin Attention (LMA), Structured Texture Attention (STA), and Fusion Attention (FA), each focused on extracting distinct morphological features. TMAN achieved an average accuracy of 74.40%, precision of 73.18%, and specificity of 96.02%, surpassing state-of-the-art methods. The findings reveal that incorporating CDFI significantly improved classification for malignant subtypes with a 10% accuracy boost, while SE had a negligible impact. These findings highlight the effectiveness of TMAN in extracting nuanced morphological features and advancing precision in breast ultrasound diagnosis. The source code is accessible at https://github.com/windywindyw/TMAN .</p>","PeriodicalId":516858,"journal":{"name":"Journal of imaging informatics in medicine","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TMAN: A Triple Morphological Feature Attention Network for Fine-Grained Classification of Breast Ultrasound Images.\",\"authors\":\"Dongyue Wang, Min Xue, Hui Wang\",\"doi\":\"10.1007/s10278-025-01496-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurately diagnosing various types of breast lesions is critical for assessing breast cancer risk and predicting patient outcomes, which necessitates a fine-grained classification approach. While convolutional neural networks (CNNs) are predominantly employed in fine-grained classification tasks for breast lesions, they often struggle to effectively capture and model the intricate relationships between local and global features, an aspect that is vital for achieving high classification accuracy. Additionally, Color Doppler Flow Imaging (CDFI) and Strain Elastography (SE) are two important ultrasound imaging techniques widely used in the diagnosis of breast lesions. However, their specific contributions to fine-grained classification have not been thoroughly investigated. In this paper, we introduce a Triple Morphological Feature Attention Network (TMAN) designed to enhance fine-grained classification of breast ultrasound images. The TMAN architecture comprises three key modules: Local Margin Attention (LMA), Structured Texture Attention (STA), and Fusion Attention (FA), each focused on extracting distinct morphological features. TMAN achieved an average accuracy of 74.40%, precision of 73.18%, and specificity of 96.02%, surpassing state-of-the-art methods. The findings reveal that incorporating CDFI significantly improved classification for malignant subtypes with a 10% accuracy boost, while SE had a negligible impact. These findings highlight the effectiveness of TMAN in extracting nuanced morphological features and advancing precision in breast ultrasound diagnosis. The source code is accessible at https://github.com/windywindyw/TMAN .</p>\",\"PeriodicalId\":516858,\"journal\":{\"name\":\"Journal of imaging informatics in medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of imaging informatics in medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10278-025-01496-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of imaging informatics in medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10278-025-01496-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确诊断各种类型的乳腺病变对于评估乳腺癌风险和预测患者预后至关重要,这就需要一种细粒度的分类方法。虽然卷积神经网络(cnn)主要用于乳腺病变的细粒度分类任务,但它们往往难以有效地捕获和建模局部和全局特征之间的复杂关系,而这对于实现高分类精度至关重要。此外,彩色多普勒血流成像(CDFI)和应变弹性成像(SE)是两种重要的超声成像技术,广泛应用于乳腺病变的诊断。然而,它们对细粒度分类的具体贡献尚未得到彻底的研究。在本文中,我们引入了一个三重形态学特征注意网络(TMAN)来增强乳腺超声图像的细粒度分类。TMAN架构包括三个关键模块:局部边缘注意(LMA)、结构纹理注意(STA)和融合注意(FA),每个模块都专注于提取不同的形态特征。TMAN的平均准确率为74.40%,精密度为73.18%,特异度为96.02%,优于现有方法。研究结果显示,结合CDFI可显著改善恶性亚型的分类,准确率提高10%,而SE的影响可以忽略不计。这些发现突出了TMAN在提取细微形态学特征和提高乳腺超声诊断精度方面的有效性。源代码可从https://github.com/windywindyw/TMAN访问。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TMAN: A Triple Morphological Feature Attention Network for Fine-Grained Classification of Breast Ultrasound Images.

Accurately diagnosing various types of breast lesions is critical for assessing breast cancer risk and predicting patient outcomes, which necessitates a fine-grained classification approach. While convolutional neural networks (CNNs) are predominantly employed in fine-grained classification tasks for breast lesions, they often struggle to effectively capture and model the intricate relationships between local and global features, an aspect that is vital for achieving high classification accuracy. Additionally, Color Doppler Flow Imaging (CDFI) and Strain Elastography (SE) are two important ultrasound imaging techniques widely used in the diagnosis of breast lesions. However, their specific contributions to fine-grained classification have not been thoroughly investigated. In this paper, we introduce a Triple Morphological Feature Attention Network (TMAN) designed to enhance fine-grained classification of breast ultrasound images. The TMAN architecture comprises three key modules: Local Margin Attention (LMA), Structured Texture Attention (STA), and Fusion Attention (FA), each focused on extracting distinct morphological features. TMAN achieved an average accuracy of 74.40%, precision of 73.18%, and specificity of 96.02%, surpassing state-of-the-art methods. The findings reveal that incorporating CDFI significantly improved classification for malignant subtypes with a 10% accuracy boost, while SE had a negligible impact. These findings highlight the effectiveness of TMAN in extracting nuanced morphological features and advancing precision in breast ultrasound diagnosis. The source code is accessible at https://github.com/windywindyw/TMAN .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信