考虑肠道微生物群的人工智能和机器学习计算模型为部分肝切除术后最佳肝脏再生的个性化决策支持术前计划。

Constantinos S Mammas, Adamantia S Mamma
{"title":"考虑肠道微生物群的人工智能和机器学习计算模型为部分肝切除术后最佳肝脏再生的个性化决策支持术前计划。","authors":"Constantinos S Mammas, Adamantia S Mamma","doi":"10.3233/SHTI250048","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Gut microbiota (GM) is implicated in the remnant liver regeneration (LR) after partial hepatectomy (PH) and affects outcomes. Our study shifts the algorithmic computational modeling from the classical knowledge of (LR) to that of (GM) implication, integrating Artificial Intelligence/Machine Learning (AI/ML) for risk/benefit analysis to optimize outcomes.</p><p><strong>Methods: </strong>The best model predicting postoperative liver volume (LR) has been developed upon the classic biological knowledge. This phenomenological model predicts, whether liver size would recover or remain irreversibly reduced and it is not perfect.</p><p><strong>Results: </strong>Focusing on the impact of (GM) on (LR) after PH and the current articles upon (GM) and its impact on the change of the medical dogma integrated (GM), (AI/ML) to provide new predictive and therapeutics capabilities after PH.</p><p><strong>Conclusion/discussion: </strong>Personalized and precise preoperative preparation for PH can optimize anatomic PH, pre-operative planning and outcomes upon AI/ML risk/benefit analysis integrating the impact and measurements of (GM).</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"323 ","pages":"55-60"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI and Machine Learning Computational Modeling that Takes into Consideration Gut Microbiota for a Personalized Decision Support Preoperative Planning for an Optimum Liver Regeneration After Partial Hepatectomy.\",\"authors\":\"Constantinos S Mammas, Adamantia S Mamma\",\"doi\":\"10.3233/SHTI250048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Gut microbiota (GM) is implicated in the remnant liver regeneration (LR) after partial hepatectomy (PH) and affects outcomes. Our study shifts the algorithmic computational modeling from the classical knowledge of (LR) to that of (GM) implication, integrating Artificial Intelligence/Machine Learning (AI/ML) for risk/benefit analysis to optimize outcomes.</p><p><strong>Methods: </strong>The best model predicting postoperative liver volume (LR) has been developed upon the classic biological knowledge. This phenomenological model predicts, whether liver size would recover or remain irreversibly reduced and it is not perfect.</p><p><strong>Results: </strong>Focusing on the impact of (GM) on (LR) after PH and the current articles upon (GM) and its impact on the change of the medical dogma integrated (GM), (AI/ML) to provide new predictive and therapeutics capabilities after PH.</p><p><strong>Conclusion/discussion: </strong>Personalized and precise preoperative preparation for PH can optimize anatomic PH, pre-operative planning and outcomes upon AI/ML risk/benefit analysis integrating the impact and measurements of (GM).</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"323 \",\"pages\":\"55-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI250048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI250048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

肠道微生物群(GM)与部分肝切除术(PH)后残肝再生(LR)有关,并影响预后。我们的研究将算法计算建模从经典的(LR)知识转变为(GM)含义,整合人工智能/机器学习(AI/ML)进行风险/收益分析,以优化结果。方法:在经典生物学知识的基础上建立预测术后肝体积的最佳模型。这个现象学模型预测肝脏大小是否会恢复或保持不可逆的缩小,但并不完美。结果:关注(GM)对PH后(LR)的影响以及目前关于(GM)及其对医学准则变化的影响的文章,(AI/ML)为PH后提供新的预测和治疗能力。结论/讨论:个性化和精确的PH术前准备可以优化解剖PH,术前计划和AI/ML风险/收益分析的结果,整合(GM)的影响和测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AI and Machine Learning Computational Modeling that Takes into Consideration Gut Microbiota for a Personalized Decision Support Preoperative Planning for an Optimum Liver Regeneration After Partial Hepatectomy.

Introduction: Gut microbiota (GM) is implicated in the remnant liver regeneration (LR) after partial hepatectomy (PH) and affects outcomes. Our study shifts the algorithmic computational modeling from the classical knowledge of (LR) to that of (GM) implication, integrating Artificial Intelligence/Machine Learning (AI/ML) for risk/benefit analysis to optimize outcomes.

Methods: The best model predicting postoperative liver volume (LR) has been developed upon the classic biological knowledge. This phenomenological model predicts, whether liver size would recover or remain irreversibly reduced and it is not perfect.

Results: Focusing on the impact of (GM) on (LR) after PH and the current articles upon (GM) and its impact on the change of the medical dogma integrated (GM), (AI/ML) to provide new predictive and therapeutics capabilities after PH.

Conclusion/discussion: Personalized and precise preoperative preparation for PH can optimize anatomic PH, pre-operative planning and outcomes upon AI/ML risk/benefit analysis integrating the impact and measurements of (GM).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信