{"title":"The chromosome-level genome of water hyacinth (Eichhornia crassipes).","authors":"Zhihao Qian, Jingshan Yang, Zhizhong Li, Jinming Chen","doi":"10.1186/s12863-025-01317-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Water hyacinth (Eichhornia crassipes) is one of the most notorious invasive aquatic plants in the world and is known to cause significant ecological and socioeconomic impacts. Here, we reported a high-quality chromosome-level genome for water hyacinth, which will be a valuable reference for future investigations of its invasion.</p><p><strong>Data description: </strong>A chromosome-level genome for water hyacinth was constructed by combing MGI short-reads sequencing, PacBio HiFi (High-fidelity) sequencing, and Hi-C sequencing, which resulted in ca. 1132.2 Mb in size the contig and scaffold N50 length of 18.76 Mb and 69.84 Mb, respectively. A total of 1024.36 Mb (90.47%) of the assembled sequences were anchored to 16 pseudochromosomes, dividing into subgenome A (468.72 Mb in size) and subgenome B (555.64 Mb in size). A total of 57,683 protein-coding genes were predicted, including 25,445 protein-coding genes for subgenome A and 27,992 protein-coding genes for subgenome B. Furthermore, the LAI and QV scores of the water hyacinth genome were 12.32 and 48.91, respectively.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"26 1","pages":"25"},"PeriodicalIF":1.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC genomic data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-025-01317-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The chromosome-level genome of water hyacinth (Eichhornia crassipes).
Objectives: Water hyacinth (Eichhornia crassipes) is one of the most notorious invasive aquatic plants in the world and is known to cause significant ecological and socioeconomic impacts. Here, we reported a high-quality chromosome-level genome for water hyacinth, which will be a valuable reference for future investigations of its invasion.
Data description: A chromosome-level genome for water hyacinth was constructed by combing MGI short-reads sequencing, PacBio HiFi (High-fidelity) sequencing, and Hi-C sequencing, which resulted in ca. 1132.2 Mb in size the contig and scaffold N50 length of 18.76 Mb and 69.84 Mb, respectively. A total of 1024.36 Mb (90.47%) of the assembled sequences were anchored to 16 pseudochromosomes, dividing into subgenome A (468.72 Mb in size) and subgenome B (555.64 Mb in size). A total of 57,683 protein-coding genes were predicted, including 25,445 protein-coding genes for subgenome A and 27,992 protein-coding genes for subgenome B. Furthermore, the LAI and QV scores of the water hyacinth genome were 12.32 and 48.91, respectively.