Aditya M Kashyap, Delip Rao, Mary Regina Boland, Li Shen, Chris Callison-Burch
{"title":"Predicting Explainable Dementia Types with LLM-aided Feature Engineering.","authors":"Aditya M Kashyap, Delip Rao, Mary Regina Boland, Li Shen, Chris Callison-Burch","doi":"10.1093/bioinformatics/btaf156","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>The integration of Machine Learning (ML) and Artificial Intelligence (AI) into healthcare has immense potential due to the rapidly growing volume of clinical data. However, existing AI models, particularly Large Language Models (LLMs) like GPT-4, face significant challenges in terms of explainability and reliability, particularly in high-stakes domains like healthcare.</p><p><strong>Results: </strong>This paper proposes a novel LLM-aided feature engineering approach that enhances interpretability by extracting clinically relevant features from the Oxford Textbook of Medicine. By converting clinical notes into concept vector representations and employing a linear classifier, our method achieved an accuracy of 0.72, outperforming a traditional n-gram Logistic Regression baseline (0.64) and the GPT-4 baseline (0.48), while focusing on high level clinical features. We also explore using Text Embeddings to reduce the overall time and cost of our approach by 97%.</p><p><strong>Availability: </strong>All code relevant to this paper is available at: https://github.com/AdityaKashyap423/Dementia_LLM_Feature_Engineering/tree/main.</p><p><strong>Supplementary information: </strong>Supplementary PDF and other data files can be found at https://drive.google.com/drive/folders/1UqdpsKFnvGjUJgp58k3RYcJ8zN8zPmWR?usp=share_link .</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btaf156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动机:由于临床数据量迅速增长,将机器学习(ML)和人工智能(AI)融入医疗保健领域具有巨大的潜力。然而,现有的人工智能模型,特别是像 GPT-4 这样的大型语言模型(LLM),在可解释性和可靠性方面面临着巨大挑战,尤其是在医疗保健这样的高风险领域:本文提出了一种新颖的 LLM 辅助特征工程方法,通过从《牛津医学教科书》中提取临床相关特征来增强可解释性。通过将临床笔记转换为概念向量表示并采用线性分类器,我们的方法达到了 0.72 的准确率,优于传统的 n-gram Logistic Regression 基线(0.64)和 GPT-4 基线(0.48),同时专注于高级临床特征。我们还探索了使用文本嵌入的方法,将我们的方法的总体时间和成本降低了 97%:与本文相关的所有代码可从以下网址获取:https://github.com/AdityaKashyap423/Dementia_LLM_Feature_Engineering/tree/main.Supplementary information:补充 PDF 和其他数据文件可在 https://drive.google.com/drive/folders/1UqdpsKFnvGjUJgp58k3RYcJ8zN8zPmWR?usp=share_link 上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Explainable Dementia Types with LLM-aided Feature Engineering.

Motivation: The integration of Machine Learning (ML) and Artificial Intelligence (AI) into healthcare has immense potential due to the rapidly growing volume of clinical data. However, existing AI models, particularly Large Language Models (LLMs) like GPT-4, face significant challenges in terms of explainability and reliability, particularly in high-stakes domains like healthcare.

Results: This paper proposes a novel LLM-aided feature engineering approach that enhances interpretability by extracting clinically relevant features from the Oxford Textbook of Medicine. By converting clinical notes into concept vector representations and employing a linear classifier, our method achieved an accuracy of 0.72, outperforming a traditional n-gram Logistic Regression baseline (0.64) and the GPT-4 baseline (0.48), while focusing on high level clinical features. We also explore using Text Embeddings to reduce the overall time and cost of our approach by 97%.

Availability: All code relevant to this paper is available at: https://github.com/AdityaKashyap423/Dementia_LLM_Feature_Engineering/tree/main.

Supplementary information: Supplementary PDF and other data files can be found at https://drive.google.com/drive/folders/1UqdpsKFnvGjUJgp58k3RYcJ8zN8zPmWR?usp=share_link .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信