基于分数的图像到图像布朗桥。

Peiyong Wang, Bohan Xiao, Qisheng He, Carri Glide-Hurst, Ming Dong
{"title":"基于分数的图像到图像布朗桥。","authors":"Peiyong Wang, Bohan Xiao, Qisheng He, Carri Glide-Hurst, Ming Dong","doi":"10.1145/3664647.3680999","DOIUrl":null,"url":null,"abstract":"<p><p>Image-to-image translation is defined as the process of learning a mapping between images from a source domain and images from a target domain. The probabilistic structure that maps a fixed initial state to a pinned terminal state through a standard Wiener process is a Brownian bridge. In this paper, we propose a score-based Stochastic Differential Equation (SDE) approach via the Brownian bridges, termed the Amenable Brownian Bridges (A-Bridges), to image-to-image translation tasks as an unconditional diffusion model. Our framework embraces a large family of Brownian bridge models, while the discretization of the linear A-Bridge exploits its advantage that provides the explicit solution in a closed form and thus facilitates the model training. Our model enables the accelerated sampling and has achieved record-breaking performance in sample quality and diversity on benchmark datasets following the guidance of its SDE structure.</p>","PeriodicalId":90687,"journal":{"name":"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia","volume":"2024 ","pages":"10765-10773"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977112/pdf/","citationCount":"0","resultStr":"{\"title\":\"Score-Based Image-to-Image Brownian Bridge.\",\"authors\":\"Peiyong Wang, Bohan Xiao, Qisheng He, Carri Glide-Hurst, Ming Dong\",\"doi\":\"10.1145/3664647.3680999\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Image-to-image translation is defined as the process of learning a mapping between images from a source domain and images from a target domain. The probabilistic structure that maps a fixed initial state to a pinned terminal state through a standard Wiener process is a Brownian bridge. In this paper, we propose a score-based Stochastic Differential Equation (SDE) approach via the Brownian bridges, termed the Amenable Brownian Bridges (A-Bridges), to image-to-image translation tasks as an unconditional diffusion model. Our framework embraces a large family of Brownian bridge models, while the discretization of the linear A-Bridge exploits its advantage that provides the explicit solution in a closed form and thus facilitates the model training. Our model enables the accelerated sampling and has achieved record-breaking performance in sample quality and diversity on benchmark datasets following the guidance of its SDE structure.</p>\",\"PeriodicalId\":90687,\"journal\":{\"name\":\"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia\",\"volume\":\"2024 \",\"pages\":\"10765-10773\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11977112/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3664647.3680999\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Multimedia, with co-located Symposium & Workshops. ACM International Conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3664647.3680999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图像到图像的转换被定义为学习源域图像和目标域图像之间映射的过程。通过标准维纳过程将固定的初始状态映射到固定的终端状态的概率结构是布朗桥。在本文中,我们提出了一种基于分数的随机微分方程(SDE)方法,通过布朗桥(称为可调节布朗桥(a - bridges))作为无条件扩散模型来处理图像到图像的翻译任务。我们的框架包含了一个大的布朗桥模型家族,而线性a桥的离散化利用了它的优势,以封闭的形式提供显式解决方案,从而促进了模型训练。我们的模型能够加速采样,并在其SDE结构的指导下,在基准数据集的样本质量和多样性方面取得了破纪录的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Score-Based Image-to-Image Brownian Bridge.

Image-to-image translation is defined as the process of learning a mapping between images from a source domain and images from a target domain. The probabilistic structure that maps a fixed initial state to a pinned terminal state through a standard Wiener process is a Brownian bridge. In this paper, we propose a score-based Stochastic Differential Equation (SDE) approach via the Brownian bridges, termed the Amenable Brownian Bridges (A-Bridges), to image-to-image translation tasks as an unconditional diffusion model. Our framework embraces a large family of Brownian bridge models, while the discretization of the linear A-Bridge exploits its advantage that provides the explicit solution in a closed form and thus facilitates the model training. Our model enables the accelerated sampling and has achieved record-breaking performance in sample quality and diversity on benchmark datasets following the guidance of its SDE structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信