Flotillin- 1通过抑制血视网膜屏障中的铁下垂改善实验性糖尿病视网膜病变。

IF 4.8 3区 医学 Q1 GENETICS & HEREDITY
Jie Zhang, Ke Chang, Yanyu Shangguan, Ruoning Luo, Yanlong Bi, Zicheng Yu, Bing Li
{"title":"Flotillin- 1通过抑制血视网膜屏障中的铁下垂改善实验性糖尿病视网膜病变。","authors":"Jie Zhang, Ke Chang, Yanyu Shangguan, Ruoning Luo, Yanlong Bi, Zicheng Yu, Bing Li","doi":"10.1007/s00109-025-02544-x","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a chronic disease that severely impairs the vision of working individuals and is closely linked to blood-retinal barrier (BRB) dysfunction. Flotillin- 1 (FLOT1), a protein located in membrane lipid rafts, is essential for various intracellular biological processes. However, its role in the pathogenesis of DR remains unclear. Ferroptosis in high-glucose was assessed using Cell counting kit- 8 (CCK- 8), Malondialdehyde (MDA), Glutathione (GSH), Fe<sup>2+</sup> assays, and transferrin expression. BRB disruption was evaluated with Evans blue staining. The interaction between FLOT1 and NF-E2-related factor 2 (Nrf2) was confirmed by immunoprecipitation and ferroptosis mechanisms were explored by inhibiting Nrf2 with ML385. In db/db mice (a type 2 diabetes model) was intravitreal injection of an adeno-associated virus (AAV) overexpressing FLOT1. Expression levels of Nrf2, solute carrier family 7 member 11 (SLC7 A11), and glutathione peroxidase 4 (GPX4) were evaluated in retina. Our study indicated that FLOT1 significantly alleviated BRB damage in DR, reversing high-glucose induced reductions in GPX4 and GSH, and inhibited the elevation of MDA and Fe<sup>2+</sup>. FLOT1 also suppressed ROS accumulation. Mechanistically, FLOT1 activates the Nrf2 pathway by enhancing its expression and promoting its nuclear translocation, thereby stimulating the SLC7 A11/GPX4 pathway to inhibiting lipid peroxidation and ferroptosis. We have identified ferroptosis is a key mechanism driving BRB damage in DR.</p>","PeriodicalId":50127,"journal":{"name":"Journal of Molecular Medicine-Jmm","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flotillin- 1 ameliorates experimental diabetic retinopathy by inhibiting ferroptosis in blood-retinal barrier.\",\"authors\":\"Jie Zhang, Ke Chang, Yanyu Shangguan, Ruoning Luo, Yanlong Bi, Zicheng Yu, Bing Li\",\"doi\":\"10.1007/s00109-025-02544-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetic retinopathy (DR) is a chronic disease that severely impairs the vision of working individuals and is closely linked to blood-retinal barrier (BRB) dysfunction. Flotillin- 1 (FLOT1), a protein located in membrane lipid rafts, is essential for various intracellular biological processes. However, its role in the pathogenesis of DR remains unclear. Ferroptosis in high-glucose was assessed using Cell counting kit- 8 (CCK- 8), Malondialdehyde (MDA), Glutathione (GSH), Fe<sup>2+</sup> assays, and transferrin expression. BRB disruption was evaluated with Evans blue staining. The interaction between FLOT1 and NF-E2-related factor 2 (Nrf2) was confirmed by immunoprecipitation and ferroptosis mechanisms were explored by inhibiting Nrf2 with ML385. In db/db mice (a type 2 diabetes model) was intravitreal injection of an adeno-associated virus (AAV) overexpressing FLOT1. Expression levels of Nrf2, solute carrier family 7 member 11 (SLC7 A11), and glutathione peroxidase 4 (GPX4) were evaluated in retina. Our study indicated that FLOT1 significantly alleviated BRB damage in DR, reversing high-glucose induced reductions in GPX4 and GSH, and inhibited the elevation of MDA and Fe<sup>2+</sup>. FLOT1 also suppressed ROS accumulation. Mechanistically, FLOT1 activates the Nrf2 pathway by enhancing its expression and promoting its nuclear translocation, thereby stimulating the SLC7 A11/GPX4 pathway to inhibiting lipid peroxidation and ferroptosis. We have identified ferroptosis is a key mechanism driving BRB damage in DR.</p>\",\"PeriodicalId\":50127,\"journal\":{\"name\":\"Journal of Molecular Medicine-Jmm\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Medicine-Jmm\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00109-025-02544-x\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Medicine-Jmm","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00109-025-02544-x","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病视网膜病变(DR)是一种严重损害视力的慢性疾病,与血液-视网膜屏障(BRB)功能障碍密切相关。Flotillin-1(FLOT1)是一种位于膜脂质筏中的蛋白质,对细胞内的各种生物过程至关重要。然而,它在 DR 发病机制中的作用仍不清楚。使用细胞计数试剂盒-8(CCK-8)、丙二醛(MDA)、谷胱甘肽(GSH)、Fe2+测定和转铁蛋白表达评估了高糖下的铁变态反应。用伊文思蓝染色法评估 BRB 破坏情况。通过免疫沉淀证实了 FLOT1 和 NF-E2 相关因子 2(Nrf2)之间的相互作用,并通过 ML385 抑制 Nrf2 探索了铁变态反应机制。在 db/db 小鼠(2 型糖尿病模型)中静脉注射过表达 FLOT1 的腺相关病毒(AAV)。评估了视网膜中 Nrf2、溶质运载家族 7 成员 11(SLC7 A11)和谷胱甘肽过氧化物酶 4(GPX4)的表达水平。我们的研究表明,FLOT1 能明显减轻 DR 中 BRB 的损伤,逆转高葡萄糖诱导的 GPX4 和 GSH 的减少,并抑制 MDA 和 Fe2+ 的升高。FLOT1 还能抑制 ROS 的积累。从机理上讲,FLOT1 通过增强 Nrf2 的表达和促进其核转位来激活 Nrf2 通路,从而刺激 SLC7 A11/GPX4 通路抑制脂质过氧化和铁氧化。我们发现,铁突变是驱动 DR 中 BRB 损伤的关键机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flotillin- 1 ameliorates experimental diabetic retinopathy by inhibiting ferroptosis in blood-retinal barrier.

Diabetic retinopathy (DR) is a chronic disease that severely impairs the vision of working individuals and is closely linked to blood-retinal barrier (BRB) dysfunction. Flotillin- 1 (FLOT1), a protein located in membrane lipid rafts, is essential for various intracellular biological processes. However, its role in the pathogenesis of DR remains unclear. Ferroptosis in high-glucose was assessed using Cell counting kit- 8 (CCK- 8), Malondialdehyde (MDA), Glutathione (GSH), Fe2+ assays, and transferrin expression. BRB disruption was evaluated with Evans blue staining. The interaction between FLOT1 and NF-E2-related factor 2 (Nrf2) was confirmed by immunoprecipitation and ferroptosis mechanisms were explored by inhibiting Nrf2 with ML385. In db/db mice (a type 2 diabetes model) was intravitreal injection of an adeno-associated virus (AAV) overexpressing FLOT1. Expression levels of Nrf2, solute carrier family 7 member 11 (SLC7 A11), and glutathione peroxidase 4 (GPX4) were evaluated in retina. Our study indicated that FLOT1 significantly alleviated BRB damage in DR, reversing high-glucose induced reductions in GPX4 and GSH, and inhibited the elevation of MDA and Fe2+. FLOT1 also suppressed ROS accumulation. Mechanistically, FLOT1 activates the Nrf2 pathway by enhancing its expression and promoting its nuclear translocation, thereby stimulating the SLC7 A11/GPX4 pathway to inhibiting lipid peroxidation and ferroptosis. We have identified ferroptosis is a key mechanism driving BRB damage in DR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Medicine-Jmm
Journal of Molecular Medicine-Jmm 医学-医学:研究与实验
CiteScore
9.30
自引率
0.00%
发文量
100
审稿时长
1.3 months
期刊介绍: The Journal of Molecular Medicine publishes original research articles and review articles that range from basic findings in mechanisms of disease pathogenesis to therapy. The focus includes all human diseases, including but not limited to: Aging, angiogenesis, autoimmune diseases as well as other inflammatory diseases, cancer, cardiovascular diseases, development and differentiation, endocrinology, gastrointestinal diseases and hepatology, genetics and epigenetics, hematology, hypoxia research, immunology, infectious diseases, metabolic disorders, neuroscience of diseases, -omics based disease research, regenerative medicine, and stem cell research. Studies solely based on cell lines will not be considered. Studies that are based on model organisms will be considered as long as they are directly relevant to human disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信