Julie Le Bris, Nathalie Chen, Adeline Supandy, Olaya Rendueles, Daria Van Tyne
{"title":"肺炎克雷伯菌的噬菌体治疗:了解细菌-噬菌体相互作用的治疗创新。","authors":"Julie Le Bris, Nathalie Chen, Adeline Supandy, Olaya Rendueles, Daria Van Tyne","doi":"10.1371/journal.ppat.1012971","DOIUrl":null,"url":null,"abstract":"<p><p>Klebsiella pneumoniae (KP) is a Gram-negative bacterium that commonly resides in the human gastrointestinal tract and can also act as an opportunistic pathogen and cause extra-intestinal infections. KP poses a global health threat because it causes both hospital- and community-acquired infections in immune-competent and immunocompromised hosts. These infections can be multidrug-resistant and/or hypervirulent, making KP infections difficult to treat and deadly. In the absence of effective treatments for recalcitrant KP infections, bacteriophage (phage) therapy is gaining attention as a promising alternative. In this review, we evaluate KP epidemiology and epitope diversity, discuss interactions between KP-targeting phages and their bacterial hosts from an eco-evolutionary perspective, and summarize recent efforts in phage therapy for treating KP infections. We also discuss novel approaches, including genetic engineering and machine learning, as initial steps toward developing KP-targeting phage therapy as a precision medicine approach for an emerging and dangerous pathogen.</p>","PeriodicalId":48999,"journal":{"name":"PLoS Pathogens","volume":"21 4","pages":"e1012971"},"PeriodicalIF":5.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978313/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phage therapy for Klebsiella pneumoniae: Understanding bacteria-phage interactions for therapeutic innovations.\",\"authors\":\"Julie Le Bris, Nathalie Chen, Adeline Supandy, Olaya Rendueles, Daria Van Tyne\",\"doi\":\"10.1371/journal.ppat.1012971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Klebsiella pneumoniae (KP) is a Gram-negative bacterium that commonly resides in the human gastrointestinal tract and can also act as an opportunistic pathogen and cause extra-intestinal infections. KP poses a global health threat because it causes both hospital- and community-acquired infections in immune-competent and immunocompromised hosts. These infections can be multidrug-resistant and/or hypervirulent, making KP infections difficult to treat and deadly. In the absence of effective treatments for recalcitrant KP infections, bacteriophage (phage) therapy is gaining attention as a promising alternative. In this review, we evaluate KP epidemiology and epitope diversity, discuss interactions between KP-targeting phages and their bacterial hosts from an eco-evolutionary perspective, and summarize recent efforts in phage therapy for treating KP infections. We also discuss novel approaches, including genetic engineering and machine learning, as initial steps toward developing KP-targeting phage therapy as a precision medicine approach for an emerging and dangerous pathogen.</p>\",\"PeriodicalId\":48999,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"21 4\",\"pages\":\"e1012971\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978313/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012971\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012971","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Phage therapy for Klebsiella pneumoniae: Understanding bacteria-phage interactions for therapeutic innovations.
Klebsiella pneumoniae (KP) is a Gram-negative bacterium that commonly resides in the human gastrointestinal tract and can also act as an opportunistic pathogen and cause extra-intestinal infections. KP poses a global health threat because it causes both hospital- and community-acquired infections in immune-competent and immunocompromised hosts. These infections can be multidrug-resistant and/or hypervirulent, making KP infections difficult to treat and deadly. In the absence of effective treatments for recalcitrant KP infections, bacteriophage (phage) therapy is gaining attention as a promising alternative. In this review, we evaluate KP epidemiology and epitope diversity, discuss interactions between KP-targeting phages and their bacterial hosts from an eco-evolutionary perspective, and summarize recent efforts in phage therapy for treating KP infections. We also discuss novel approaches, including genetic engineering and machine learning, as initial steps toward developing KP-targeting phage therapy as a precision medicine approach for an emerging and dangerous pathogen.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.