Ziqi Zhou, Zhaoyu Lai, Rui Tang, Xinyu Chen, Yunjia Qu, Lin Xia, Micayla George, Adonary Munoz, Minhong Zhou, Yu-Chen Tai, Yingxiao Wang, Hu Cang, Yu-Hwa Lo
{"title":"用于成像流式细胞术的高效免校准颜色补偿算法。","authors":"Ziqi Zhou, Zhaoyu Lai, Rui Tang, Xinyu Chen, Yunjia Qu, Lin Xia, Micayla George, Adonary Munoz, Minhong Zhou, Yu-Chen Tai, Yingxiao Wang, Hu Cang, Yu-Hwa Lo","doi":"10.1002/cyto.a.24931","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>As an emerging platform gaining significant attention from the biomedical community, multiplexed fluorescent imaging from imaging flow cytometry enables simultaneous detection of numerous biological targets within a single cell. Due to the spectral overlap, signals from one fluorophore can bleed into other detection channels, leading to spillover artifacts, which cause erroneous results and false discoveries. Existing color compensation algorithms use special samples to calibrate the fluorophores individually, a time-consuming and laborious process that is cumbersome and hard to scale. While recent developments in calibration-free algorithms produce promising results in multi-color microscope images, these algorithms, when applied to single-cell images with all the fluorophores within a small and constrained area, tend to cause overcorrection by treating real signals as crosstalk and triggering stability problems during the iterative computation process. Here we demonstrate a simple and intuitive algorithm that greatly reduces overcorrection and is computationally efficient. While designed for imaging flow cytometers, our calibration-free crosstalk removal algorithm can be readily applied to microscopy as well. We have validated its effectiveness on various datasets, including simulated cell images, 2D and 3D imaging flow cytometry images, and microscopic images. Our algorithm offers an effective solution for multi-parameter single-cell images where channels are often both spectrally and spatially overlapped within the limited area of a single cell.</p>\n </div>","PeriodicalId":11068,"journal":{"name":"Cytometry Part A","volume":"107 5","pages":"309-320"},"PeriodicalIF":2.5000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Efficient Calibration-Free Color Compensation Algorithm for Imaging Flow Cytometry\",\"authors\":\"Ziqi Zhou, Zhaoyu Lai, Rui Tang, Xinyu Chen, Yunjia Qu, Lin Xia, Micayla George, Adonary Munoz, Minhong Zhou, Yu-Chen Tai, Yingxiao Wang, Hu Cang, Yu-Hwa Lo\",\"doi\":\"10.1002/cyto.a.24931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>As an emerging platform gaining significant attention from the biomedical community, multiplexed fluorescent imaging from imaging flow cytometry enables simultaneous detection of numerous biological targets within a single cell. Due to the spectral overlap, signals from one fluorophore can bleed into other detection channels, leading to spillover artifacts, which cause erroneous results and false discoveries. Existing color compensation algorithms use special samples to calibrate the fluorophores individually, a time-consuming and laborious process that is cumbersome and hard to scale. While recent developments in calibration-free algorithms produce promising results in multi-color microscope images, these algorithms, when applied to single-cell images with all the fluorophores within a small and constrained area, tend to cause overcorrection by treating real signals as crosstalk and triggering stability problems during the iterative computation process. Here we demonstrate a simple and intuitive algorithm that greatly reduces overcorrection and is computationally efficient. While designed for imaging flow cytometers, our calibration-free crosstalk removal algorithm can be readily applied to microscopy as well. We have validated its effectiveness on various datasets, including simulated cell images, 2D and 3D imaging flow cytometry images, and microscopic images. Our algorithm offers an effective solution for multi-parameter single-cell images where channels are often both spectrally and spatially overlapped within the limited area of a single cell.</p>\\n </div>\",\"PeriodicalId\":11068,\"journal\":{\"name\":\"Cytometry Part A\",\"volume\":\"107 5\",\"pages\":\"309-320\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part A\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24931\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part A","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24931","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Highly Efficient Calibration-Free Color Compensation Algorithm for Imaging Flow Cytometry
As an emerging platform gaining significant attention from the biomedical community, multiplexed fluorescent imaging from imaging flow cytometry enables simultaneous detection of numerous biological targets within a single cell. Due to the spectral overlap, signals from one fluorophore can bleed into other detection channels, leading to spillover artifacts, which cause erroneous results and false discoveries. Existing color compensation algorithms use special samples to calibrate the fluorophores individually, a time-consuming and laborious process that is cumbersome and hard to scale. While recent developments in calibration-free algorithms produce promising results in multi-color microscope images, these algorithms, when applied to single-cell images with all the fluorophores within a small and constrained area, tend to cause overcorrection by treating real signals as crosstalk and triggering stability problems during the iterative computation process. Here we demonstrate a simple and intuitive algorithm that greatly reduces overcorrection and is computationally efficient. While designed for imaging flow cytometers, our calibration-free crosstalk removal algorithm can be readily applied to microscopy as well. We have validated its effectiveness on various datasets, including simulated cell images, 2D and 3D imaging flow cytometry images, and microscopic images. Our algorithm offers an effective solution for multi-parameter single-cell images where channels are often both spectrally and spatially overlapped within the limited area of a single cell.
期刊介绍:
Cytometry Part A, the journal of quantitative single-cell analysis, features original research reports and reviews of innovative scientific studies employing quantitative single-cell measurement, separation, manipulation, and modeling techniques, as well as original articles on mechanisms of molecular and cellular functions obtained by cytometry techniques.
The journal welcomes submissions from multiple research fields that fully embrace the study of the cytome:
Biomedical Instrumentation Engineering
Biophotonics
Bioinformatics
Cell Biology
Computational Biology
Data Science
Immunology
Parasitology
Microbiology
Neuroscience
Cancer
Stem Cells
Tissue Regeneration.