仅CXCL12就足以将正常成纤维细胞重编程为癌症相关成纤维细胞。

IF 6.1 2区 生物学 Q1 CELL BIOLOGY
Zelong Ma, Diping Yu, Siqi Tan, Hao Li, Faxiao Zhou, Lei Qiu, Xiaoli Xie, Xiaoming Wu
{"title":"仅CXCL12就足以将正常成纤维细胞重编程为癌症相关成纤维细胞。","authors":"Zelong Ma, Diping Yu, Siqi Tan, Hao Li, Faxiao Zhou, Lei Qiu, Xiaoli Xie, Xiaoming Wu","doi":"10.1038/s41420-025-02420-0","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME), playing significant roles in regulating cancer progression. However, the underlying mechanism of CAFs activation remains elusive. In this study, we aim to investigates the mechanisms by which CAFs promote the conversion of normal fibroblasts (NFs) to CAFs in lung cancer, with a focus on the role of p53 mutations and the CXCL12/STAT3 signaling axis. We found that CAFs significantly induced NFs to acquire CAFs properties (called CEFs), including upregulation of α-SMA and Vimentin, enhanced proliferation and migration, and increased ability to promote lung cancer cell migration. In vivo, CEFs accelerated A549 xenograft growth and induced spontaneous lung metastasis. CXCL12 was identified as a key factor in NFs-to-CEFs conversion, with its expression positively correlated with CAFs markers in lung cancer. Further investigation confirmed that CXCL12 is sufficient to reprogram NFs into CAFs through the STAT3 pathway. Notably, inhibiting CXCL12 signaling and the STAT3 pathway reduced the conversion of NFs to CAFs, thereby hindering lung cancer progression progression both in vitro and in vivo. Our study reveals CAFs could promote the conversion of NFs to CAFs-like cells through the CXCL12/STAT3 axis, enhancing tumor growth and metastasis in lung cancer. Therefore, inhibition of the CXCL12/STAT3 axis is a promising strategy for the treatment of lung cancers and other CXCL12-dependent malignancies.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"156"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CXCL12 alone is enough to Reprogram Normal Fibroblasts into Cancer-Associated Fibroblasts.\",\"authors\":\"Zelong Ma, Diping Yu, Siqi Tan, Hao Li, Faxiao Zhou, Lei Qiu, Xiaoli Xie, Xiaoming Wu\",\"doi\":\"10.1038/s41420-025-02420-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME), playing significant roles in regulating cancer progression. However, the underlying mechanism of CAFs activation remains elusive. In this study, we aim to investigates the mechanisms by which CAFs promote the conversion of normal fibroblasts (NFs) to CAFs in lung cancer, with a focus on the role of p53 mutations and the CXCL12/STAT3 signaling axis. We found that CAFs significantly induced NFs to acquire CAFs properties (called CEFs), including upregulation of α-SMA and Vimentin, enhanced proliferation and migration, and increased ability to promote lung cancer cell migration. In vivo, CEFs accelerated A549 xenograft growth and induced spontaneous lung metastasis. CXCL12 was identified as a key factor in NFs-to-CEFs conversion, with its expression positively correlated with CAFs markers in lung cancer. Further investigation confirmed that CXCL12 is sufficient to reprogram NFs into CAFs through the STAT3 pathway. Notably, inhibiting CXCL12 signaling and the STAT3 pathway reduced the conversion of NFs to CAFs, thereby hindering lung cancer progression progression both in vitro and in vivo. Our study reveals CAFs could promote the conversion of NFs to CAFs-like cells through the CXCL12/STAT3 axis, enhancing tumor growth and metastasis in lung cancer. Therefore, inhibition of the CXCL12/STAT3 axis is a promising strategy for the treatment of lung cancers and other CXCL12-dependent malignancies.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"11 1\",\"pages\":\"156\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-025-02420-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02420-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症相关成纤维细胞(CAFs)是肿瘤微环境(TME)的关键组成部分,在调节癌症进展中发挥重要作用。然而,CAFs活化的潜在机制尚不清楚。在这项研究中,我们的目的是研究肺癌中CAFs促进正常成纤维细胞(NFs)向CAFs转化的机制,重点关注p53突变和CXCL12/STAT3信号轴的作用。我们发现,CAFs显著诱导NFs获得CAFs特性(称为CEFs),包括α-SMA和Vimentin的上调,增殖和迁移增强,促进肺癌细胞迁移的能力增强。在体内,CEFs加速了A549异种移植物的生长并诱导了自发性肺转移。CXCL12被认为是nf -to- cefs转化的关键因子,其表达与肺癌中cas标志物正相关。进一步的研究证实,CXCL12足以通过STAT3通路将NFs重编程为CAFs。值得注意的是,抑制CXCL12信号通路和STAT3通路可减少NFs向CAFs的转化,从而在体外和体内均阻碍肺癌的进展。我们的研究表明,CAFs可以通过CXCL12/STAT3轴促进NFs向CAFs样细胞的转化,促进肺癌的肿瘤生长和转移。因此,抑制CXCL12/STAT3轴是治疗肺癌和其他依赖CXCL12的恶性肿瘤的一种有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CXCL12 alone is enough to Reprogram Normal Fibroblasts into Cancer-Associated Fibroblasts.

Cancer-associated fibroblasts (CAFs) are critical components of the tumor microenvironment (TME), playing significant roles in regulating cancer progression. However, the underlying mechanism of CAFs activation remains elusive. In this study, we aim to investigates the mechanisms by which CAFs promote the conversion of normal fibroblasts (NFs) to CAFs in lung cancer, with a focus on the role of p53 mutations and the CXCL12/STAT3 signaling axis. We found that CAFs significantly induced NFs to acquire CAFs properties (called CEFs), including upregulation of α-SMA and Vimentin, enhanced proliferation and migration, and increased ability to promote lung cancer cell migration. In vivo, CEFs accelerated A549 xenograft growth and induced spontaneous lung metastasis. CXCL12 was identified as a key factor in NFs-to-CEFs conversion, with its expression positively correlated with CAFs markers in lung cancer. Further investigation confirmed that CXCL12 is sufficient to reprogram NFs into CAFs through the STAT3 pathway. Notably, inhibiting CXCL12 signaling and the STAT3 pathway reduced the conversion of NFs to CAFs, thereby hindering lung cancer progression progression both in vitro and in vivo. Our study reveals CAFs could promote the conversion of NFs to CAFs-like cells through the CXCL12/STAT3 axis, enhancing tumor growth and metastasis in lung cancer. Therefore, inhibition of the CXCL12/STAT3 axis is a promising strategy for the treatment of lung cancers and other CXCL12-dependent malignancies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信