{"title":"湿度对KCL存在下铁素体-奥氏体模型合金高温腐蚀的影响","authors":"P. Kingsbery, T. John, C. Stephan-Scherb","doi":"10.1002/maco.202414575","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the impact of humidity on the corrosion behavior of an Fe–18Cr–12Ni alloy in environments containing KCl, as a deposit, and either laboratory air or <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mstyle>\n <mspace></mspace>\n \n <mtext>SO</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mn>2</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math> at 560°C for exposure times up to 330 h. Corrosion characteristics were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) with subsequent Rietveld analysis to quantify the obtained reaction products. Samples exposed to lab air and KCl showed half the weight gain in humid air than in dry atmospheres (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0.80</mn>\n <mspace></mspace>\n \n <mfrac>\n <mrow>\n <mspace></mspace>\n \n <mtext>mg</mtext>\n </mrow>\n \n <msup>\n <mtext>cm</mtext>\n \n <mn>2</mn>\n </msup>\n </mfrac>\n \n <mo>±</mo>\n \n <mn>0.06</mn>\n <mspace></mspace>\n \n <mfrac>\n <mtext>mg</mtext>\n \n <mrow>\n <mtext>cm</mtext>\n \n <msup>\n <mspace></mspace>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math> at 30.00% <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>±</mo>\n </mrow>\n </mrow>\n </semantics></math> 0.07% relative humidity (r.H.) vs. <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>1.63</mn>\n <mspace></mspace>\n \n <mfrac>\n <mrow>\n <mspace></mspace>\n \n <mtext>mg</mtext>\n </mrow>\n \n <msup>\n <mtext>cm</mtext>\n \n <mn>2</mn>\n </msup>\n </mfrac>\n \n <mo>±</mo>\n \n <mn>0.01</mn>\n <mspace></mspace>\n \n <mfrac>\n <mtext>mg</mtext>\n \n <mrow>\n <mtext>cm</mtext>\n \n <msup>\n <mspace></mspace>\n \n <mn>2</mn>\n </msup>\n </mrow>\n </mfrac>\n </mrow>\n </mrow>\n </semantics></math> at 1.58% <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>±</mo>\n </mrow>\n </mrow>\n </semantics></math> 0.09% r.H.). The surface porosity, as determined by image analysis of SEM surface images, was lower for the samples exposed to humid air compared to dry air (5.5% <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>±</mo>\n </mrow>\n </mrow>\n </semantics></math> 2.1% vs. 11.0% <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mo>±</mo>\n </mrow>\n </mrow>\n </semantics></math> 2.2%, respectively). In a SO<sub>2</sub> containing environment humidity decreased the scale thickness for deposit induced corrosion significantly by one order of magnitude, reflected by a low amount of oxide phases such as <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mstyle>\n <mspace></mspace>\n \n <mtext>Cr</mtext>\n </mstyle>\n \n <mn>2</mn>\n </msub>\n \n <msub>\n <mstyle>\n <mtext>O</mtext>\n </mstyle>\n \n <mn>3</mn>\n </msub>\n \n <mo>,</mo>\n \n <msub>\n <mstyle>\n <mtext>Fe</mtext>\n </mstyle>\n \n <mn>2</mn>\n </msub>\n \n <msub>\n <mstyle>\n <mi>O</mi>\n <mspace></mspace>\n </mstyle>\n \n <mn>3</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mstyle>\n <mspace></mspace>\n \n <mtext>Fe</mtext>\n </mstyle>\n \n <mn>3</mn>\n </msub>\n \n <msub>\n <mstyle>\n <mtext>O</mtext>\n <mspace></mspace>\n </mstyle>\n \n <mn>4</mn>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>. This study shows that humidity present in a hot gas containing other corrosive species, such as SO<sub>2</sub>, can be beneficial for KCl deposit induced corrosion of stainless steels.</p>","PeriodicalId":18225,"journal":{"name":"Materials and Corrosion-werkstoffe Und Korrosion","volume":"76 4","pages":"572-580"},"PeriodicalIF":2.0000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202414575","citationCount":"0","resultStr":"{\"title\":\"The Impact of Humidity on High Temperature Corrosion of Ferritic-Austenitic Model Alloys in the Presence of KCL\",\"authors\":\"P. Kingsbery, T. John, C. Stephan-Scherb\",\"doi\":\"10.1002/maco.202414575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study investigates the impact of humidity on the corrosion behavior of an Fe–18Cr–12Ni alloy in environments containing KCl, as a deposit, and either laboratory air or <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>SO</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mn>2</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math> at 560°C for exposure times up to 330 h. Corrosion characteristics were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) with subsequent Rietveld analysis to quantify the obtained reaction products. Samples exposed to lab air and KCl showed half the weight gain in humid air than in dry atmospheres (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0.80</mn>\\n <mspace></mspace>\\n \\n <mfrac>\\n <mrow>\\n <mspace></mspace>\\n \\n <mtext>mg</mtext>\\n </mrow>\\n \\n <msup>\\n <mtext>cm</mtext>\\n \\n <mn>2</mn>\\n </msup>\\n </mfrac>\\n \\n <mo>±</mo>\\n \\n <mn>0.06</mn>\\n <mspace></mspace>\\n \\n <mfrac>\\n <mtext>mg</mtext>\\n \\n <mrow>\\n <mtext>cm</mtext>\\n \\n <msup>\\n <mspace></mspace>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math> at 30.00% <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n </mrow>\\n </semantics></math> 0.07% relative humidity (r.H.) vs. <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>1.63</mn>\\n <mspace></mspace>\\n \\n <mfrac>\\n <mrow>\\n <mspace></mspace>\\n \\n <mtext>mg</mtext>\\n </mrow>\\n \\n <msup>\\n <mtext>cm</mtext>\\n \\n <mn>2</mn>\\n </msup>\\n </mfrac>\\n \\n <mo>±</mo>\\n \\n <mn>0.01</mn>\\n <mspace></mspace>\\n \\n <mfrac>\\n <mtext>mg</mtext>\\n \\n <mrow>\\n <mtext>cm</mtext>\\n \\n <msup>\\n <mspace></mspace>\\n \\n <mn>2</mn>\\n </msup>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </mrow>\\n </semantics></math> at 1.58% <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n </mrow>\\n </semantics></math> 0.09% r.H.). The surface porosity, as determined by image analysis of SEM surface images, was lower for the samples exposed to humid air compared to dry air (5.5% <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n </mrow>\\n </semantics></math> 2.1% vs. 11.0% <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mo>±</mo>\\n </mrow>\\n </mrow>\\n </semantics></math> 2.2%, respectively). In a SO<sub>2</sub> containing environment humidity decreased the scale thickness for deposit induced corrosion significantly by one order of magnitude, reflected by a low amount of oxide phases such as <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>Cr</mtext>\\n </mstyle>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <msub>\\n <mstyle>\\n <mtext>O</mtext>\\n </mstyle>\\n \\n <mn>3</mn>\\n </msub>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mstyle>\\n <mtext>Fe</mtext>\\n </mstyle>\\n \\n <mn>2</mn>\\n </msub>\\n \\n <msub>\\n <mstyle>\\n <mi>O</mi>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mn>3</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mstyle>\\n <mspace></mspace>\\n \\n <mtext>Fe</mtext>\\n </mstyle>\\n \\n <mn>3</mn>\\n </msub>\\n \\n <msub>\\n <mstyle>\\n <mtext>O</mtext>\\n <mspace></mspace>\\n </mstyle>\\n \\n <mn>4</mn>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>. This study shows that humidity present in a hot gas containing other corrosive species, such as SO<sub>2</sub>, can be beneficial for KCl deposit induced corrosion of stainless steels.</p>\",\"PeriodicalId\":18225,\"journal\":{\"name\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"volume\":\"76 4\",\"pages\":\"572-580\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/maco.202414575\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials and Corrosion-werkstoffe Und Korrosion\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414575\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials and Corrosion-werkstoffe Und Korrosion","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/maco.202414575","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了湿度对Fe-18Cr-12Ni合金在含有KCl的环境中的腐蚀行为的影响。在560°C的实验室空气或so2中暴露330小时利用扫描电子显微镜(SEM)和x射线衍射仪(XRD)分析其特征,并进行Rietveld分析,定量得到的反应产物。暴露于实验室空气和氯化钾的样本显示,潮湿空气中的体重增加是干燥空气中的一半(0.80毫克)Cm 2±0.06 mg Cm2在30.00%±0.07%相对湿度(r.h.) vs。1.63毫克厘米2±0.01 mg cm 2(1.58%±0.09% r.h.)。通过SEM表面图像的图像分析,与干燥空气相比,暴露在潮湿空气中的样品的表面孔隙率较低(分别为5.5%±2.1%和11.0%±2.2%)。 在含SO2的环境中,湿度使沉积腐蚀的垢厚显著降低了一个数量级;表现为少量的氧化相,如cr2o3 ,Fe 2 O 3,和Fe 3 O4 .这项研究表明,在含有其他腐蚀性物质(如SO2)的高温气体中,湿度对KCl沉积引起的不锈钢腐蚀是有利的。
The Impact of Humidity on High Temperature Corrosion of Ferritic-Austenitic Model Alloys in the Presence of KCL
This study investigates the impact of humidity on the corrosion behavior of an Fe–18Cr–12Ni alloy in environments containing KCl, as a deposit, and either laboratory air or at 560°C for exposure times up to 330 h. Corrosion characteristics were analyzed using scanning electron microscopy (SEM) and X-ray diffraction (XRD) with subsequent Rietveld analysis to quantify the obtained reaction products. Samples exposed to lab air and KCl showed half the weight gain in humid air than in dry atmospheres ( at 30.00% 0.07% relative humidity (r.H.) vs. at 1.58% 0.09% r.H.). The surface porosity, as determined by image analysis of SEM surface images, was lower for the samples exposed to humid air compared to dry air (5.5% 2.1% vs. 11.0% 2.2%, respectively). In a SO2 containing environment humidity decreased the scale thickness for deposit induced corrosion significantly by one order of magnitude, reflected by a low amount of oxide phases such as , and . This study shows that humidity present in a hot gas containing other corrosive species, such as SO2, can be beneficial for KCl deposit induced corrosion of stainless steels.
期刊介绍:
Materials and Corrosion is the leading European journal in its field, providing rapid and comprehensive coverage of the subject and specifically highlighting the increasing importance of corrosion research and prevention.
Several sections exclusive to Materials and Corrosion bring you closer to the current events in the field of corrosion research and add to the impact this journal can make on your work.