三点加载下双层 TiB/Ti-B 基陶瓷-金属复合材料的损伤模型

IF 1.8 4区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
K. A. Khvostunkov, P. M. Bazhin, M. V. Velikov, A. O. Zhidovich, M. S. Titov, M. S. Antipov
{"title":"三点加载下双层 TiB/Ti-B 基陶瓷-金属复合材料的损伤模型","authors":"K. A. Khvostunkov,&nbsp;P. M. Bazhin,&nbsp;M. V. Velikov,&nbsp;A. O. Zhidovich,&nbsp;M. S. Titov,&nbsp;M. S. Antipov","doi":"10.1134/S1029959924601283","DOIUrl":null,"url":null,"abstract":"<p>In this work, a model was developed for determining the critical load of a two-layer ceramic-metal composite under three-point loading based on the analysis of the local influence of distributed defects on the stress field. The stressed state is defined as the solution of a boundary value problem for a solid. The object of investigation was a two-layer TiB/Ti-based ceramic-metal composite obtained by free SHS (self-propagating high-temperature synthesis) compression. A method was developed for determining the statistical distribution of defects within a specimen based on metallographic cross-sectional analysis. The critical load was determined by the defect size probability density found from the experimental data. The cases of flat and sinusoidal interfaces between the composite layers were considered. A digital model of a two-layer beam deformed under three-point loading was built in Abaqus finite element software, which was used for numerical simulation of the stress field. Based on the numerical results, the stress field was corrected for the sinusoidal interface. The influence of the corrected stress field on the specimen strength was analyzed when the defect distribution pattern was similar to that in the composite with the flat interface. It was shown that the sinusoidal shape of the interface had no effect on the specimen strength, provided that the period and amplitude of deviation from the rectilinear shape were small relative to the linear size of the specimen.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"28 2","pages":"208 - 220"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Damage Model of a Two-Layer TiB/Ti-Based Ceramic-Metal Composite under Three-Point Loading\",\"authors\":\"K. A. Khvostunkov,&nbsp;P. M. Bazhin,&nbsp;M. V. Velikov,&nbsp;A. O. Zhidovich,&nbsp;M. S. Titov,&nbsp;M. S. Antipov\",\"doi\":\"10.1134/S1029959924601283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, a model was developed for determining the critical load of a two-layer ceramic-metal composite under three-point loading based on the analysis of the local influence of distributed defects on the stress field. The stressed state is defined as the solution of a boundary value problem for a solid. The object of investigation was a two-layer TiB/Ti-based ceramic-metal composite obtained by free SHS (self-propagating high-temperature synthesis) compression. A method was developed for determining the statistical distribution of defects within a specimen based on metallographic cross-sectional analysis. The critical load was determined by the defect size probability density found from the experimental data. The cases of flat and sinusoidal interfaces between the composite layers were considered. A digital model of a two-layer beam deformed under three-point loading was built in Abaqus finite element software, which was used for numerical simulation of the stress field. Based on the numerical results, the stress field was corrected for the sinusoidal interface. The influence of the corrected stress field on the specimen strength was analyzed when the defect distribution pattern was similar to that in the composite with the flat interface. It was shown that the sinusoidal shape of the interface had no effect on the specimen strength, provided that the period and amplitude of deviation from the rectilinear shape were small relative to the linear size of the specimen.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"28 2\",\"pages\":\"208 - 220\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959924601283\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924601283","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

本文在分析分布缺陷对应力场局部影响的基础上,建立了确定三点载荷下两层陶瓷-金属复合材料临界载荷的模型。应力状态被定义为固体边值问题的解。研究对象是通过自由SHS(自蔓延高温合成)压缩制备的双层TiB/ ti基陶瓷-金属复合材料。提出了一种基于金相截面分析的试样缺陷统计分布确定方法。根据实验数据得到的缺陷尺寸概率密度确定临界载荷。考虑了复合材料层间的平面界面和正弦界面的情况。在Abaqus有限元软件中建立了三点荷载作用下两层梁变形的数字模型,并对其应力场进行了数值模拟。根据数值结果,对正弦界面的应力场进行了修正。分析了当缺陷分布模式与平面界面相似时,修正后的应力场对试样强度的影响。结果表明,只要偏离直线形状的周期和幅度相对于试样的线性尺寸较小,则界面的正弦形状对试样的强度没有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Damage Model of a Two-Layer TiB/Ti-Based Ceramic-Metal Composite under Three-Point Loading

Damage Model of a Two-Layer TiB/Ti-Based Ceramic-Metal Composite under Three-Point Loading

In this work, a model was developed for determining the critical load of a two-layer ceramic-metal composite under three-point loading based on the analysis of the local influence of distributed defects on the stress field. The stressed state is defined as the solution of a boundary value problem for a solid. The object of investigation was a two-layer TiB/Ti-based ceramic-metal composite obtained by free SHS (self-propagating high-temperature synthesis) compression. A method was developed for determining the statistical distribution of defects within a specimen based on metallographic cross-sectional analysis. The critical load was determined by the defect size probability density found from the experimental data. The cases of flat and sinusoidal interfaces between the composite layers were considered. A digital model of a two-layer beam deformed under three-point loading was built in Abaqus finite element software, which was used for numerical simulation of the stress field. Based on the numerical results, the stress field was corrected for the sinusoidal interface. The influence of the corrected stress field on the specimen strength was analyzed when the defect distribution pattern was similar to that in the composite with the flat interface. It was shown that the sinusoidal shape of the interface had no effect on the specimen strength, provided that the period and amplitude of deviation from the rectilinear shape were small relative to the linear size of the specimen.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Mesomechanics
Physical Mesomechanics Materials Science-General Materials Science
CiteScore
3.50
自引率
18.80%
发文量
48
期刊介绍: The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信