A. V. Kolubaev, E. A. Kolubaev, A. I. Dmitriev, S. Yu. Tarasov, A. V. Chumaevskii
{"title":"摩擦学中材料科学的基础和应用方面","authors":"A. V. Kolubaev, E. A. Kolubaev, A. I. Dmitriev, S. Yu. Tarasov, A. V. Chumaevskii","doi":"10.1134/S1029959924601908","DOIUrl":null,"url":null,"abstract":"<p>Dedicated to the 40th anniversary of the Institute of Strength Physics and Materials Science SB RAS. The paper reviews the current state of research in the field of sliding friction and wear and the related production technologies with an emphasis on the works of the Institute of Strength Physics and Materials Science SB RAS. These works gave fundamental results on structural and phase transformations of materials below the worn surface, which were later used as a basis for the development of wear-resistant materials, hard coatings, lubricants, and friction processing methods. The main mechanisms of deformation and metal flow in the subsurface layer during adhesive friction and friction stir welding are considered. The development of mathematical modeling of friction and wear processes for various materials is traced. Computer modeling of friction and wear processes allowed solving a number of theoretical and applied problems of plastic flow of materials in the sliding contact zone and the development of surface processing methods. The obtained results were used to explain material flow in friction stir welding. The evolution of industrial technologies based on unlubricated and adhesive friction is reviewed.</p>","PeriodicalId":726,"journal":{"name":"Physical Mesomechanics","volume":"28 2","pages":"145 - 169"},"PeriodicalIF":1.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fundamental and Applied Aspects of Materials Science in Tribology\",\"authors\":\"A. V. Kolubaev, E. A. Kolubaev, A. I. Dmitriev, S. Yu. Tarasov, A. V. Chumaevskii\",\"doi\":\"10.1134/S1029959924601908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Dedicated to the 40th anniversary of the Institute of Strength Physics and Materials Science SB RAS. The paper reviews the current state of research in the field of sliding friction and wear and the related production technologies with an emphasis on the works of the Institute of Strength Physics and Materials Science SB RAS. These works gave fundamental results on structural and phase transformations of materials below the worn surface, which were later used as a basis for the development of wear-resistant materials, hard coatings, lubricants, and friction processing methods. The main mechanisms of deformation and metal flow in the subsurface layer during adhesive friction and friction stir welding are considered. The development of mathematical modeling of friction and wear processes for various materials is traced. Computer modeling of friction and wear processes allowed solving a number of theoretical and applied problems of plastic flow of materials in the sliding contact zone and the development of surface processing methods. The obtained results were used to explain material flow in friction stir welding. The evolution of industrial technologies based on unlubricated and adhesive friction is reviewed.</p>\",\"PeriodicalId\":726,\"journal\":{\"name\":\"Physical Mesomechanics\",\"volume\":\"28 2\",\"pages\":\"145 - 169\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Mesomechanics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1029959924601908\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Mesomechanics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S1029959924601908","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Fundamental and Applied Aspects of Materials Science in Tribology
Dedicated to the 40th anniversary of the Institute of Strength Physics and Materials Science SB RAS. The paper reviews the current state of research in the field of sliding friction and wear and the related production technologies with an emphasis on the works of the Institute of Strength Physics and Materials Science SB RAS. These works gave fundamental results on structural and phase transformations of materials below the worn surface, which were later used as a basis for the development of wear-resistant materials, hard coatings, lubricants, and friction processing methods. The main mechanisms of deformation and metal flow in the subsurface layer during adhesive friction and friction stir welding are considered. The development of mathematical modeling of friction and wear processes for various materials is traced. Computer modeling of friction and wear processes allowed solving a number of theoretical and applied problems of plastic flow of materials in the sliding contact zone and the development of surface processing methods. The obtained results were used to explain material flow in friction stir welding. The evolution of industrial technologies based on unlubricated and adhesive friction is reviewed.
期刊介绍:
The journal provides an international medium for the publication of theoretical and experimental studies and reviews related in the physical mesomechanics and also solid-state physics, mechanics, materials science, geodynamics, non-destructive testing and in a large number of other fields where the physical mesomechanics may be used extensively. Papers dealing with the processing, characterization, structure and physical properties and computational aspects of the mesomechanics of heterogeneous media, fracture mesomechanics, physical mesomechanics of materials, mesomechanics applications for geodynamics and tectonics, mesomechanics of smart materials and materials for electronics, non-destructive testing are viewed as suitable for publication.