Muhamad Zulkhairi Rizlan, Ahmad Baharuddin Abdullah, Zuhailawati Hussain
{"title":"焊后热处理对铝-钢搅拌摩擦焊坯料成形性能的影响","authors":"Muhamad Zulkhairi Rizlan, Ahmad Baharuddin Abdullah, Zuhailawati Hussain","doi":"10.1007/s12289-025-01898-4","DOIUrl":null,"url":null,"abstract":"<div><p>Formability is the ability of a material to undergo plastic deformation without being damaged. In sheet metal forming, materials are known to experience deformation in biaxial stretch mode. In order to simulate the common failure strains in sheet metal forming process, numerous formability test methods can be used. A material’s formability can be altered in several ways, one of which is post-weld heat treatment. In this study, the effect of post-weld heat treatment on the formability of aluminum alloy 6061 and SAE1020 mild steel tailor welded blanks fabricated by friction stir welding was evaluated using limiting dome height test. It was found that the specimens which underwent post-weld heat treatment recorded a lower springback and higher value of plane strain, indicating a better formability. The improved formability is attributed to microstructural homogenization, defects elimination, residual stresses relieve and IMC layer growth control from the post-weld heat treatment process.</p></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"18 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of post-weld heat treatment on the formability of aluminum to steel friction stir welded blanks\",\"authors\":\"Muhamad Zulkhairi Rizlan, Ahmad Baharuddin Abdullah, Zuhailawati Hussain\",\"doi\":\"10.1007/s12289-025-01898-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Formability is the ability of a material to undergo plastic deformation without being damaged. In sheet metal forming, materials are known to experience deformation in biaxial stretch mode. In order to simulate the common failure strains in sheet metal forming process, numerous formability test methods can be used. A material’s formability can be altered in several ways, one of which is post-weld heat treatment. In this study, the effect of post-weld heat treatment on the formability of aluminum alloy 6061 and SAE1020 mild steel tailor welded blanks fabricated by friction stir welding was evaluated using limiting dome height test. It was found that the specimens which underwent post-weld heat treatment recorded a lower springback and higher value of plane strain, indicating a better formability. The improved formability is attributed to microstructural homogenization, defects elimination, residual stresses relieve and IMC layer growth control from the post-weld heat treatment process.</p></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"18 2\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-025-01898-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-025-01898-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
The effect of post-weld heat treatment on the formability of aluminum to steel friction stir welded blanks
Formability is the ability of a material to undergo plastic deformation without being damaged. In sheet metal forming, materials are known to experience deformation in biaxial stretch mode. In order to simulate the common failure strains in sheet metal forming process, numerous formability test methods can be used. A material’s formability can be altered in several ways, one of which is post-weld heat treatment. In this study, the effect of post-weld heat treatment on the formability of aluminum alloy 6061 and SAE1020 mild steel tailor welded blanks fabricated by friction stir welding was evaluated using limiting dome height test. It was found that the specimens which underwent post-weld heat treatment recorded a lower springback and higher value of plane strain, indicating a better formability. The improved formability is attributed to microstructural homogenization, defects elimination, residual stresses relieve and IMC layer growth control from the post-weld heat treatment process.
期刊介绍:
The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material.
The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations.
All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.