IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Gwonhak Lee, Seonghoon Choi, Joonsuk Huh and Artur F. Izmaylov
{"title":"Efficient strategies for reducing sampling error in quantum Krylov subspace diagonalization","authors":"Gwonhak Lee, Seonghoon Choi, Joonsuk Huh and Artur F. Izmaylov","doi":"10.1039/D4DD00321G","DOIUrl":null,"url":null,"abstract":"<p >Within the realm of early fault-tolerant quantum computing (EFTQC), quantum Krylov subspace diagonalization (QKSD) has emerged as a promising quantum algorithm for the approximate Hamiltonian diagonalization <em>via</em> projection onto the quantum Krylov subspace. However, the algorithm often requires solving an ill-conditioned generalized eigenvalue problem (GEVP) involving erroneous matrix pairs, which can significantly distort the solution. Since EFTQC assumes limited-scale error correction, finite sampling error becomes a dominant source of error in these matrices. This work focuses on quantifying sampling errors during the measurement of matrix element in the projected Hamiltonian examining two measurement approaches based on the Hamiltonian decompositions: the linear combination of unitaries and diagonalizable fragments. To reduce sampling error within a fixed budget of quantum circuit repetitions, we propose two measurement strategies: the shifting technique and coefficient splitting. The shifting technique eliminates redundant Hamiltonian components that annihilate either the bra or ket states, while coefficient splitting optimizes the measurement of common terms across different circuits. Numerical experiments with electronic structures of small molecules demonstrate the effectiveness of these strategies, reducing sampling costs by a factor of 20–500.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 4","pages":" 954-969"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00321g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00321g","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在早期容错量子计算(EFTQC)领域,量子克雷洛夫子空间对角化(QKSD)已成为通过投影到量子克雷洛夫子空间进行近似哈密顿对角化的一种很有前途的量子算法。然而,该算法通常需要求解涉及错误矩阵对的条件不良广义特征值问题(GEVP),这会严重扭曲求解结果。由于 EFTQC 假定了有限尺度的误差修正,有限采样误差成为这些矩阵中的主要误差来源。这项工作的重点是量化测量投影哈密顿中矩阵元素时的采样误差,研究了两种基于哈密顿分解的测量方法:单元的线性组合和可对角化片段。为了在固定的量子电路重复预算内减少采样误差,我们提出了两种测量策略:移位技术和系数分割。移位技术消除了湮灭 bra 或 ket 状态的冗余哈密顿成分,而系数拆分则优化了不同电路中共同项的测量。小分子电子结构的数值实验证明了这些策略的有效性,可将采样成本降低 20-500 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Efficient strategies for reducing sampling error in quantum Krylov subspace diagonalization

Efficient strategies for reducing sampling error in quantum Krylov subspace diagonalization

Within the realm of early fault-tolerant quantum computing (EFTQC), quantum Krylov subspace diagonalization (QKSD) has emerged as a promising quantum algorithm for the approximate Hamiltonian diagonalization via projection onto the quantum Krylov subspace. However, the algorithm often requires solving an ill-conditioned generalized eigenvalue problem (GEVP) involving erroneous matrix pairs, which can significantly distort the solution. Since EFTQC assumes limited-scale error correction, finite sampling error becomes a dominant source of error in these matrices. This work focuses on quantifying sampling errors during the measurement of matrix element in the projected Hamiltonian examining two measurement approaches based on the Hamiltonian decompositions: the linear combination of unitaries and diagonalizable fragments. To reduce sampling error within a fixed budget of quantum circuit repetitions, we propose two measurement strategies: the shifting technique and coefficient splitting. The shifting technique eliminates redundant Hamiltonian components that annihilate either the bra or ket states, while coefficient splitting optimizes the measurement of common terms across different circuits. Numerical experiments with electronic structures of small molecules demonstrate the effectiveness of these strategies, reducing sampling costs by a factor of 20–500.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信