用化学输运模型STOCHEM-CRI†研究RO2 + OH反应生成有机三氧化氢(ROOOH)及其对大气的影响

IF 2.8 Q3 ENVIRONMENTAL SCIENCES
M. Anwar H. Khan, Rayne Holland, Asan Bacak, Thomas J. Bannan, Hugh Coe, Richard G. Derwent, Carl J. Percival and Dudley E. Shallcross
{"title":"用化学输运模型STOCHEM-CRI†研究RO2 + OH反应生成有机三氧化氢(ROOOH)及其对大气的影响","authors":"M. Anwar H. Khan, Rayne Holland, Asan Bacak, Thomas J. Bannan, Hugh Coe, Richard G. Derwent, Carl J. Percival and Dudley E. Shallcross","doi":"10.1039/D5EA00009B","DOIUrl":null,"url":null,"abstract":"<p >Incorporating the reactions of fifty peroxy radicals (RO<small><sub>2</sub></small>) with the hydroxyl radical (OH) into the global chemistry transport model, STOCHEM-CRI, affected the composition of the troposphere by changing the global burdens of NO<small><sub><em>x</em></sub></small> (−2.7 Gg, −0.5%), O<small><sub>3</sub></small> (−2.3 Tg, −0.7%), CO (−3.2 Tg, −0.8%), HO<small><sub><em>x</em></sub></small> (+2.1 Gg, +7.7%), H<small><sub>2</sub></small>O<small><sub>2</sub></small> (+0.5 Tg, +18.3%), RO<small><sub>2</sub></small> (−8.0 Gg, −18.2%), RONO<small><sub>2</sub></small> (−19.4 Gg, −4.7%), PAN (−0.1 Tg, −3.4%) HNO<small><sub>3</sub></small> (−7.4 Gg, −1.3%) and ROOH (−96.9 Gg, −3.8%). The RO<small><sub>2</sub></small> + OH addition reactions have a significant impact on HO<small><sub>2</sub></small> mixing ratios in tropical regions with up to a 25% increase, resulting in increasing H<small><sub>2</sub></small>O<small><sub>2</sub></small> mixing ratios by up to 50% over oceans. Globally, a significant amount of organic hydrotrioxides (ROOOH) (86.1 Tg per year) are produced from these reactions with CH<small><sub>3</sub></small>OOOH (67.5 Tg per year, 78%), isoprene-derived ROOOH (5.5 Tg per year, 6%) and monoterpene-derived ROOOH (4.2 Tg per year, 5%) being the most significant contributors. The tropospheric global burden of CH<small><sub>3</sub></small>OOOH is found to be 0.48 Gg. The highest mixing ratios of ROOOH, of up to 0.35 ppt, are found primarily in the oceans near the tropical land areas. The RO<small><sub>2</sub></small> + OH reactions have a small, but noticeable, contribution to OH reactivity (∼5%) over tropical oceans. Additionally, these reactions have a significant impact on RO<small><sub>2</sub></small> reactivity over tropical oceans where losses of the CH<small><sub>3</sub></small>O<small><sub>2</sub></small> radical, isoprene derived peroxy radical (ISOPO<small><sub>2</sub></small>) and monoterpene derived peroxy radical (MONOTERPO<small><sub>2</sub></small>) by OH can contribute up to 25%, 15% and 50% to the total RO<small><sub>2</sub></small> loss, respectively. The changes in RO<small><sub>2</sub></small> reactivity influence the global abundances of organic alcohols (ROH) which are important species due to their crucial impact on air quality. The ROOOH generate secondary organic aerosol (SOA) of up to 0.05 μg m<small><sup>−3</sup></small> which affects the Earth's radiation budget because of enhancing modelled organic aerosol by up to 5% and 2000% on land surfaces and the remote tropical oceans, respectively.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 4","pages":" 442-454"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00009b?page=search","citationCount":"0","resultStr":"{\"title\":\"Investigation of organic hydrotrioxide (ROOOH) formation from RO2 + OH reactions and their atmospheric impact using a chemical transport model, STOCHEM-CRI†\",\"authors\":\"M. Anwar H. Khan, Rayne Holland, Asan Bacak, Thomas J. Bannan, Hugh Coe, Richard G. Derwent, Carl J. Percival and Dudley E. Shallcross\",\"doi\":\"10.1039/D5EA00009B\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Incorporating the reactions of fifty peroxy radicals (RO<small><sub>2</sub></small>) with the hydroxyl radical (OH) into the global chemistry transport model, STOCHEM-CRI, affected the composition of the troposphere by changing the global burdens of NO<small><sub><em>x</em></sub></small> (−2.7 Gg, −0.5%), O<small><sub>3</sub></small> (−2.3 Tg, −0.7%), CO (−3.2 Tg, −0.8%), HO<small><sub><em>x</em></sub></small> (+2.1 Gg, +7.7%), H<small><sub>2</sub></small>O<small><sub>2</sub></small> (+0.5 Tg, +18.3%), RO<small><sub>2</sub></small> (−8.0 Gg, −18.2%), RONO<small><sub>2</sub></small> (−19.4 Gg, −4.7%), PAN (−0.1 Tg, −3.4%) HNO<small><sub>3</sub></small> (−7.4 Gg, −1.3%) and ROOH (−96.9 Gg, −3.8%). The RO<small><sub>2</sub></small> + OH addition reactions have a significant impact on HO<small><sub>2</sub></small> mixing ratios in tropical regions with up to a 25% increase, resulting in increasing H<small><sub>2</sub></small>O<small><sub>2</sub></small> mixing ratios by up to 50% over oceans. Globally, a significant amount of organic hydrotrioxides (ROOOH) (86.1 Tg per year) are produced from these reactions with CH<small><sub>3</sub></small>OOOH (67.5 Tg per year, 78%), isoprene-derived ROOOH (5.5 Tg per year, 6%) and monoterpene-derived ROOOH (4.2 Tg per year, 5%) being the most significant contributors. The tropospheric global burden of CH<small><sub>3</sub></small>OOOH is found to be 0.48 Gg. The highest mixing ratios of ROOOH, of up to 0.35 ppt, are found primarily in the oceans near the tropical land areas. The RO<small><sub>2</sub></small> + OH reactions have a small, but noticeable, contribution to OH reactivity (∼5%) over tropical oceans. Additionally, these reactions have a significant impact on RO<small><sub>2</sub></small> reactivity over tropical oceans where losses of the CH<small><sub>3</sub></small>O<small><sub>2</sub></small> radical, isoprene derived peroxy radical (ISOPO<small><sub>2</sub></small>) and monoterpene derived peroxy radical (MONOTERPO<small><sub>2</sub></small>) by OH can contribute up to 25%, 15% and 50% to the total RO<small><sub>2</sub></small> loss, respectively. The changes in RO<small><sub>2</sub></small> reactivity influence the global abundances of organic alcohols (ROH) which are important species due to their crucial impact on air quality. The ROOOH generate secondary organic aerosol (SOA) of up to 0.05 μg m<small><sup>−3</sup></small> which affects the Earth's radiation budget because of enhancing modelled organic aerosol by up to 5% and 2000% on land surfaces and the remote tropical oceans, respectively.</p>\",\"PeriodicalId\":72942,\"journal\":{\"name\":\"Environmental science: atmospheres\",\"volume\":\" 4\",\"pages\":\" 442-454\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ea/d5ea00009b?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental science: atmospheres\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00009b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ea/d5ea00009b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

STOCHEM-CRI将50个过氧自由基(RO2)与羟基自由基(OH)的反应纳入全球化学运输模型,通过改变NOx(−2.7 Gg,−0.5%)、O3(−2.3 Tg,−0.7%)、CO(−3.2 Tg,−0.8%)、HOx (+2.1 Gg, +7.7%)、H2O2 (+0.5 Tg, +18.3%)、RO2(−8.0 Gg,−18.2%)、RONO2(−19.4 Gg,−4.7%)、PAN(−0.1 Tg,−3.4%)、HNO3(−7.4 Gg,−1.3%)和ROOH(−96.9 Gg,−3.8%)的全球负荷,影响对流层组成。RO2 + OH加成反应对热带地区的HO2混合比有显著影响,可增加25%,导致海洋地区H2O2混合比增加50%。在全球范围内,这些反应产生了大量的有机氢三氧化物(ROOOH) (86.1 Tg /年),其中CH3OOOH (67.5 Tg /年,78%)、异戊二烯衍生的ROOOH (5.5 Tg /年,6%)和单萜烯衍生的ROOOH (4.2 Tg /年,5%)是最重要的贡献者。对流层中CH3OOOH的全球负荷为0.48 Gg,最高混合比为0.35 ppt,主要出现在靠近热带陆地地区的海洋中。在热带海洋上,RO2 + OH反应对OH反应性的贡献很小,但值得注意(~ 5%)。此外,这些反应对热带海洋的RO2反应性有显著影响,在热带海洋中,OH对CH3O2自由基、异戊二烯衍生过氧自由基(ISOPO2)和单萜烯衍生过氧自由基(MONOTERPO2)的损失分别可占总RO2损失的25%、15%和50%。RO2反应性的变化影响有机醇(ROH)的全球丰度,这是由于其对空气质量的重要影响而成为重要物种。ROOOH产生高达0.05 μg m - 3的二次有机气溶胶(SOA),影响地球的辐射预算,因为在陆地表面和偏远的热带海洋上,模拟的有机气溶胶分别增强了5%和2000%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of organic hydrotrioxide (ROOOH) formation from RO2 + OH reactions and their atmospheric impact using a chemical transport model, STOCHEM-CRI†

Investigation of organic hydrotrioxide (ROOOH) formation from RO2 + OH reactions and their atmospheric impact using a chemical transport model, STOCHEM-CRI†

Incorporating the reactions of fifty peroxy radicals (RO2) with the hydroxyl radical (OH) into the global chemistry transport model, STOCHEM-CRI, affected the composition of the troposphere by changing the global burdens of NOx (−2.7 Gg, −0.5%), O3 (−2.3 Tg, −0.7%), CO (−3.2 Tg, −0.8%), HOx (+2.1 Gg, +7.7%), H2O2 (+0.5 Tg, +18.3%), RO2 (−8.0 Gg, −18.2%), RONO2 (−19.4 Gg, −4.7%), PAN (−0.1 Tg, −3.4%) HNO3 (−7.4 Gg, −1.3%) and ROOH (−96.9 Gg, −3.8%). The RO2 + OH addition reactions have a significant impact on HO2 mixing ratios in tropical regions with up to a 25% increase, resulting in increasing H2O2 mixing ratios by up to 50% over oceans. Globally, a significant amount of organic hydrotrioxides (ROOOH) (86.1 Tg per year) are produced from these reactions with CH3OOOH (67.5 Tg per year, 78%), isoprene-derived ROOOH (5.5 Tg per year, 6%) and monoterpene-derived ROOOH (4.2 Tg per year, 5%) being the most significant contributors. The tropospheric global burden of CH3OOOH is found to be 0.48 Gg. The highest mixing ratios of ROOOH, of up to 0.35 ppt, are found primarily in the oceans near the tropical land areas. The RO2 + OH reactions have a small, but noticeable, contribution to OH reactivity (∼5%) over tropical oceans. Additionally, these reactions have a significant impact on RO2 reactivity over tropical oceans where losses of the CH3O2 radical, isoprene derived peroxy radical (ISOPO2) and monoterpene derived peroxy radical (MONOTERPO2) by OH can contribute up to 25%, 15% and 50% to the total RO2 loss, respectively. The changes in RO2 reactivity influence the global abundances of organic alcohols (ROH) which are important species due to their crucial impact on air quality. The ROOOH generate secondary organic aerosol (SOA) of up to 0.05 μg m−3 which affects the Earth's radiation budget because of enhancing modelled organic aerosol by up to 5% and 2000% on land surfaces and the remote tropical oceans, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信