聚合物逆设计深度生成模型的标杆研究

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tianle Yue, Lei Tao, Vikas Varshney and Ying Li
{"title":"聚合物逆设计深度生成模型的标杆研究","authors":"Tianle Yue, Lei Tao, Vikas Varshney and Ying Li","doi":"10.1039/D4DD00395K","DOIUrl":null,"url":null,"abstract":"<p >Molecular generative models based on deep learning have increasingly gained attention for their ability in <em>de novo</em> polymer design. However, there remains a knowledge gap in the thorough evaluation of these models. This benchmark study explores <em>de novo</em> polymer design using six popular deep generative models: Variational Autoencoder (VAE), Adversarial Autoencoder (AAE), Objective-Reinforced Generative Adversarial Networks (ORGAN), Character-level Recurrent Neural Network (CharRNN), REINVENT, and GraphINVENT. Various metrics highlighted the excellent performance of CharRNN, REINVENT, and GraphINVENT, particularly when applied to the real polymer dataset, while VAE and AAE show more advantages in generating hypothetical polymers. The CharRNN, REINVENT, and GraphINVENT models were successfully further trained on real polymers using reinforcement learning methods, targeting the generation of hypothetical high-temperature polymers for extreme environments. The findings of this study provide critical insights into the capabilities and limitations of each generative model, offering valuable guidance for future endeavors in polymer design and discovery.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 4","pages":" 910-926"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00395k?page=search","citationCount":"0","resultStr":"{\"title\":\"Benchmarking study of deep generative models for inverse polymer design†\",\"authors\":\"Tianle Yue, Lei Tao, Vikas Varshney and Ying Li\",\"doi\":\"10.1039/D4DD00395K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Molecular generative models based on deep learning have increasingly gained attention for their ability in <em>de novo</em> polymer design. However, there remains a knowledge gap in the thorough evaluation of these models. This benchmark study explores <em>de novo</em> polymer design using six popular deep generative models: Variational Autoencoder (VAE), Adversarial Autoencoder (AAE), Objective-Reinforced Generative Adversarial Networks (ORGAN), Character-level Recurrent Neural Network (CharRNN), REINVENT, and GraphINVENT. Various metrics highlighted the excellent performance of CharRNN, REINVENT, and GraphINVENT, particularly when applied to the real polymer dataset, while VAE and AAE show more advantages in generating hypothetical polymers. The CharRNN, REINVENT, and GraphINVENT models were successfully further trained on real polymers using reinforcement learning methods, targeting the generation of hypothetical high-temperature polymers for extreme environments. The findings of this study provide critical insights into the capabilities and limitations of each generative model, offering valuable guidance for future endeavors in polymer design and discovery.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 4\",\"pages\":\" 910-926\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00395k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00395k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00395k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于深度学习的分子生成模型因其在聚合物从头设计中的能力而受到越来越多的关注。然而,在对这些模型进行全面评估方面仍存在知识缺口。本基准研究使用六种流行的深度生成模型探索从头聚合物设计:变分自编码器(VAE)、对抗自编码器(AAE)、目标增强生成对抗网络(ORGAN)、字符级递归神经网络(CharRNN)、REINVENT和GraphINVENT。各种指标都突出了CharRNN、REINVENT和GraphINVENT的优异性能,特别是在应用于真实聚合物数据集时,而VAE和AAE在生成假设聚合物方面表现出更多优势。CharRNN、REINVENT和GraphINVENT模型使用强化学习方法在真实聚合物上成功地进行了进一步训练,目标是在极端环境下生成假设的高温聚合物。本研究的发现为每个生成模型的能力和局限性提供了重要的见解,为未来聚合物设计和发现的努力提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Benchmarking study of deep generative models for inverse polymer design†

Benchmarking study of deep generative models for inverse polymer design†

Molecular generative models based on deep learning have increasingly gained attention for their ability in de novo polymer design. However, there remains a knowledge gap in the thorough evaluation of these models. This benchmark study explores de novo polymer design using six popular deep generative models: Variational Autoencoder (VAE), Adversarial Autoencoder (AAE), Objective-Reinforced Generative Adversarial Networks (ORGAN), Character-level Recurrent Neural Network (CharRNN), REINVENT, and GraphINVENT. Various metrics highlighted the excellent performance of CharRNN, REINVENT, and GraphINVENT, particularly when applied to the real polymer dataset, while VAE and AAE show more advantages in generating hypothetical polymers. The CharRNN, REINVENT, and GraphINVENT models were successfully further trained on real polymers using reinforcement learning methods, targeting the generation of hypothetical high-temperature polymers for extreme environments. The findings of this study provide critical insights into the capabilities and limitations of each generative model, offering valuable guidance for future endeavors in polymer design and discovery.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信