射水鱼:通过连续打印进行高通量组合实验的改装3D打印机

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY
Alexander E. Siemenn, Basita Das, Eunice Aissi, Fang Sheng, Lleyton Elliott, Blake Hudspeth, Marilyn Meyers, James Serdy and Tonio Buonassisi
{"title":"射水鱼:通过连续打印进行高通量组合实验的改装3D打印机","authors":"Alexander E. Siemenn, Basita Das, Eunice Aissi, Fang Sheng, Lleyton Elliott, Blake Hudspeth, Marilyn Meyers, James Serdy and Tonio Buonassisi","doi":"10.1039/D4DD00249K","DOIUrl":null,"url":null,"abstract":"<p >The maturation of 3D printing technology has enabled low-cost, rapid prototyping capabilities for mainstreaming accelerated product design. The materials research community has recognized this need, but no universally accepted rapid prototyping technique currently exists for material design. Toward this end, we develop Archerfish, a 3D printer retrofitted to dispense liquid with <em>in situ</em> mixing capabilities for performing high-throughput combinatorial printing (HTCP) of material compositions. Using this HTCP design, we demonstrate continuous printing throughputs of up to 250 unique compositions per minute, 100× faster than similar tools such as Opentrons that utilize stepwise printing with <em>ex situ</em> mixing. We validate the formation of these combinatorial “prototype” material gradients using hyperspectral image analysis and energy-dispersive X-ray spectroscopy. Furthermore, we describe hardware challenges to realizing reproducible, accurate, and precise composition gradients with continuous printing, including those related to precursor dispensing, mixing, and deposition. Despite these limitations, the continuous printing and low-cost design of Archerfish demonstrate promising accelerated materials screening results across a range of materials systems from nanoparticles to perovskites.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 4","pages":" 896-909"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00249k?page=search","citationCount":"0","resultStr":"{\"title\":\"Archerfish: a retrofitted 3D printer for high-throughput combinatorial experimentation via continuous printing†\",\"authors\":\"Alexander E. Siemenn, Basita Das, Eunice Aissi, Fang Sheng, Lleyton Elliott, Blake Hudspeth, Marilyn Meyers, James Serdy and Tonio Buonassisi\",\"doi\":\"10.1039/D4DD00249K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The maturation of 3D printing technology has enabled low-cost, rapid prototyping capabilities for mainstreaming accelerated product design. The materials research community has recognized this need, but no universally accepted rapid prototyping technique currently exists for material design. Toward this end, we develop Archerfish, a 3D printer retrofitted to dispense liquid with <em>in situ</em> mixing capabilities for performing high-throughput combinatorial printing (HTCP) of material compositions. Using this HTCP design, we demonstrate continuous printing throughputs of up to 250 unique compositions per minute, 100× faster than similar tools such as Opentrons that utilize stepwise printing with <em>ex situ</em> mixing. We validate the formation of these combinatorial “prototype” material gradients using hyperspectral image analysis and energy-dispersive X-ray spectroscopy. Furthermore, we describe hardware challenges to realizing reproducible, accurate, and precise composition gradients with continuous printing, including those related to precursor dispensing, mixing, and deposition. Despite these limitations, the continuous printing and low-cost design of Archerfish demonstrate promising accelerated materials screening results across a range of materials systems from nanoparticles to perovskites.</p>\",\"PeriodicalId\":72816,\"journal\":{\"name\":\"Digital discovery\",\"volume\":\" 4\",\"pages\":\" 896-909\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/dd/d4dd00249k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00249k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00249k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

三维打印技术的成熟使低成本的快速原型制作能力成为主流,从而加速了产品设计。材料研究界已经认识到这一需求,但目前还没有普遍接受的材料设计快速原型技术。为此,我们开发了一种三维打印机 Archerfish,该打印机改装后可分配液体,具有原位混合功能,可对材料成分进行高通量组合打印 (HTCP)。利用这种 HTCP 设计,我们展示了每分钟高达 250 种独特成分的连续打印吞吐量,比 Opentrons 等利用原位混合逐步打印的类似工具快 100 倍。我们利用高光谱图像分析和能量色散 X 射线光谱验证了这些组合 "原型 "材料梯度的形成。此外,我们还介绍了通过连续打印实现可重现、准确和精确的成分梯度所面临的硬件挑战,包括与前驱体分配、混合和沉积相关的挑战。尽管存在这些局限性,Archerfish 的连续打印和低成本设计在从纳米粒子到包晶石的一系列材料系统中展示了有前景的加速材料筛选结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Archerfish: a retrofitted 3D printer for high-throughput combinatorial experimentation via continuous printing†

Archerfish: a retrofitted 3D printer for high-throughput combinatorial experimentation via continuous printing†

The maturation of 3D printing technology has enabled low-cost, rapid prototyping capabilities for mainstreaming accelerated product design. The materials research community has recognized this need, but no universally accepted rapid prototyping technique currently exists for material design. Toward this end, we develop Archerfish, a 3D printer retrofitted to dispense liquid with in situ mixing capabilities for performing high-throughput combinatorial printing (HTCP) of material compositions. Using this HTCP design, we demonstrate continuous printing throughputs of up to 250 unique compositions per minute, 100× faster than similar tools such as Opentrons that utilize stepwise printing with ex situ mixing. We validate the formation of these combinatorial “prototype” material gradients using hyperspectral image analysis and energy-dispersive X-ray spectroscopy. Furthermore, we describe hardware challenges to realizing reproducible, accurate, and precise composition gradients with continuous printing, including those related to precursor dispensing, mixing, and deposition. Despite these limitations, the continuous printing and low-cost design of Archerfish demonstrate promising accelerated materials screening results across a range of materials systems from nanoparticles to perovskites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信