非线性展开函数图的不规则时变序列预测

IF 3.4 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Wenjuan Li , Ming Jin , Junzheng Jiang , Qinghua Guo , Wanyuan Cai
{"title":"非线性展开函数图的不规则时变序列预测","authors":"Wenjuan Li ,&nbsp;Ming Jin ,&nbsp;Junzheng Jiang ,&nbsp;Qinghua Guo ,&nbsp;Wanyuan Cai","doi":"10.1016/j.sigpro.2025.110025","DOIUrl":null,"url":null,"abstract":"<div><div>Predicting irregular time-varying series is challenging due to the complex interdependencies among variables. To capture the nonlinear spatiotemporal relationships in the data evolution process, we propose two nonlinear prediction methods that incorporate nonlinear expansion functions and graph signal processing (GSP). First, we develop a nonlinear graph vector autoregressive (NL-GVAR) model equipped with a nonlinear expansion module. This model maps graph signals from low-dimensional to high-dimensional spaces to enhance the nonlinear representation capability. Second, to address the impact of fluctuations in non-stationary time series, we integrate empirical mode decomposition (EMD) into the NL-GVAR framework. This integration allows for the efficient capture of the underlying nonlinear interdependencies within the time series. Furthermore, we derive closed-form solutions for parameter optimization under the minimum mean square error (MSE) criterion. Numerical results using various synthetic and real-world datasets demonstrate the superior performance of the proposed methods compared to existing methods.</div></div>","PeriodicalId":49523,"journal":{"name":"Signal Processing","volume":"235 ","pages":"Article 110025"},"PeriodicalIF":3.4000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irregular time-varying series prediction on graphs with nonlinear expansion functions\",\"authors\":\"Wenjuan Li ,&nbsp;Ming Jin ,&nbsp;Junzheng Jiang ,&nbsp;Qinghua Guo ,&nbsp;Wanyuan Cai\",\"doi\":\"10.1016/j.sigpro.2025.110025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Predicting irregular time-varying series is challenging due to the complex interdependencies among variables. To capture the nonlinear spatiotemporal relationships in the data evolution process, we propose two nonlinear prediction methods that incorporate nonlinear expansion functions and graph signal processing (GSP). First, we develop a nonlinear graph vector autoregressive (NL-GVAR) model equipped with a nonlinear expansion module. This model maps graph signals from low-dimensional to high-dimensional spaces to enhance the nonlinear representation capability. Second, to address the impact of fluctuations in non-stationary time series, we integrate empirical mode decomposition (EMD) into the NL-GVAR framework. This integration allows for the efficient capture of the underlying nonlinear interdependencies within the time series. Furthermore, we derive closed-form solutions for parameter optimization under the minimum mean square error (MSE) criterion. Numerical results using various synthetic and real-world datasets demonstrate the superior performance of the proposed methods compared to existing methods.</div></div>\",\"PeriodicalId\":49523,\"journal\":{\"name\":\"Signal Processing\",\"volume\":\"235 \",\"pages\":\"Article 110025\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165168425001392\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165168425001392","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于变量之间复杂的相互依赖关系,预测不规则时变序列具有挑战性。为了捕捉数据演化过程中的非线性时空关系,提出了两种结合非线性展开函数和图信号处理(GSP)的非线性预测方法。首先,我们建立了一个非线性图向量自回归(NL-GVAR)模型,该模型配备了非线性展开模块。该模型将图形信号从低维空间映射到高维空间,增强了非线性表示能力。其次,为了解决非平稳时间序列波动的影响,我们将经验模态分解(EMD)整合到NL-GVAR框架中。这种集成允许在时间序列中有效地捕获潜在的非线性相互依赖性。此外,在最小均方误差(MSE)准则下,导出了参数优化的闭型解。使用各种合成数据集和实际数据集的数值结果表明,与现有方法相比,所提出的方法具有优越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irregular time-varying series prediction on graphs with nonlinear expansion functions
Predicting irregular time-varying series is challenging due to the complex interdependencies among variables. To capture the nonlinear spatiotemporal relationships in the data evolution process, we propose two nonlinear prediction methods that incorporate nonlinear expansion functions and graph signal processing (GSP). First, we develop a nonlinear graph vector autoregressive (NL-GVAR) model equipped with a nonlinear expansion module. This model maps graph signals from low-dimensional to high-dimensional spaces to enhance the nonlinear representation capability. Second, to address the impact of fluctuations in non-stationary time series, we integrate empirical mode decomposition (EMD) into the NL-GVAR framework. This integration allows for the efficient capture of the underlying nonlinear interdependencies within the time series. Furthermore, we derive closed-form solutions for parameter optimization under the minimum mean square error (MSE) criterion. Numerical results using various synthetic and real-world datasets demonstrate the superior performance of the proposed methods compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Signal Processing
Signal Processing 工程技术-工程:电子与电气
CiteScore
9.20
自引率
9.10%
发文量
309
审稿时长
41 days
期刊介绍: Signal Processing incorporates all aspects of the theory and practice of signal processing. It features original research work, tutorial and review articles, and accounts of practical developments. It is intended for a rapid dissemination of knowledge and experience to engineers and scientists working in the research, development or practical application of signal processing. Subject areas covered by the journal include: Signal Theory; Stochastic Processes; Detection and Estimation; Spectral Analysis; Filtering; Signal Processing Systems; Software Developments; Image Processing; Pattern Recognition; Optical Signal Processing; Digital Signal Processing; Multi-dimensional Signal Processing; Communication Signal Processing; Biomedical Signal Processing; Geophysical and Astrophysical Signal Processing; Earth Resources Signal Processing; Acoustic and Vibration Signal Processing; Data Processing; Remote Sensing; Signal Processing Technology; Radar Signal Processing; Sonar Signal Processing; Industrial Applications; New Applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信