Maryam , Mobeen Ur Rehman , Kil to Chong , Hilal Tayara
{"title":"P-gp酶药物抑制预测:机器学习与图神经网络的比较研究","authors":"Maryam , Mobeen Ur Rehman , Kil to Chong , Hilal Tayara","doi":"10.1016/j.comtox.2025.100344","DOIUrl":null,"url":null,"abstract":"<div><div>Drug metabolism is a complex and highly regulated process that involves the safe breakdown and elimination of drugs from the body through chemical reactions. The P-glycoprotein (P-gp) plays a key role in drug metabolism, and interfere of drugs with its transport function leads to drug toxicity. Therefore, predicting P-gp inhibition is crucial to avoid adverse drug effects. To address this, machine learning and deep learning models offer a powerful approach to accurately predict the P-gp inhibition. In this study, we have utilized a publicly available P-gp dataset to develop classification models using various machine learning algorithms (SVM, RFC, HistGradient Boosting, AdaBoost) and graph neural networks. The dataset was transformed into molecular descriptors and graph feature vectors to explore the chemical space of metabolic enzymes. Our experimental results demonstrate that machine learning models outperform deep learning models in terms of accuracy and efficiency for independent datasets. Among all models, SVM exhibited superior predictive capabilities for the P-gp data set with an accuracy of 0.95 on independent datasets. Furthermore, the analysis of the importance of the characteristics of the best model highlighted the significant contributions of specific descriptors to the data set. Finally, our model outperformed previous studies when evaluated on an external dataset, emphasizing the efficacy of molecular features in providing more precise explanations of compound properties and biological activity.</div></div>","PeriodicalId":37651,"journal":{"name":"Computational Toxicology","volume":"34 ","pages":"Article 100344"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drugs inhibition prediction in P-gp enzyme: a comparative study of machine learning and graph neural network\",\"authors\":\"Maryam , Mobeen Ur Rehman , Kil to Chong , Hilal Tayara\",\"doi\":\"10.1016/j.comtox.2025.100344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Drug metabolism is a complex and highly regulated process that involves the safe breakdown and elimination of drugs from the body through chemical reactions. The P-glycoprotein (P-gp) plays a key role in drug metabolism, and interfere of drugs with its transport function leads to drug toxicity. Therefore, predicting P-gp inhibition is crucial to avoid adverse drug effects. To address this, machine learning and deep learning models offer a powerful approach to accurately predict the P-gp inhibition. In this study, we have utilized a publicly available P-gp dataset to develop classification models using various machine learning algorithms (SVM, RFC, HistGradient Boosting, AdaBoost) and graph neural networks. The dataset was transformed into molecular descriptors and graph feature vectors to explore the chemical space of metabolic enzymes. Our experimental results demonstrate that machine learning models outperform deep learning models in terms of accuracy and efficiency for independent datasets. Among all models, SVM exhibited superior predictive capabilities for the P-gp data set with an accuracy of 0.95 on independent datasets. Furthermore, the analysis of the importance of the characteristics of the best model highlighted the significant contributions of specific descriptors to the data set. Finally, our model outperformed previous studies when evaluated on an external dataset, emphasizing the efficacy of molecular features in providing more precise explanations of compound properties and biological activity.</div></div>\",\"PeriodicalId\":37651,\"journal\":{\"name\":\"Computational Toxicology\",\"volume\":\"34 \",\"pages\":\"Article 100344\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468111325000040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Toxicology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468111325000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Drugs inhibition prediction in P-gp enzyme: a comparative study of machine learning and graph neural network
Drug metabolism is a complex and highly regulated process that involves the safe breakdown and elimination of drugs from the body through chemical reactions. The P-glycoprotein (P-gp) plays a key role in drug metabolism, and interfere of drugs with its transport function leads to drug toxicity. Therefore, predicting P-gp inhibition is crucial to avoid adverse drug effects. To address this, machine learning and deep learning models offer a powerful approach to accurately predict the P-gp inhibition. In this study, we have utilized a publicly available P-gp dataset to develop classification models using various machine learning algorithms (SVM, RFC, HistGradient Boosting, AdaBoost) and graph neural networks. The dataset was transformed into molecular descriptors and graph feature vectors to explore the chemical space of metabolic enzymes. Our experimental results demonstrate that machine learning models outperform deep learning models in terms of accuracy and efficiency for independent datasets. Among all models, SVM exhibited superior predictive capabilities for the P-gp data set with an accuracy of 0.95 on independent datasets. Furthermore, the analysis of the importance of the characteristics of the best model highlighted the significant contributions of specific descriptors to the data set. Finally, our model outperformed previous studies when evaluated on an external dataset, emphasizing the efficacy of molecular features in providing more precise explanations of compound properties and biological activity.
期刊介绍:
Computational Toxicology is an international journal publishing computational approaches that assist in the toxicological evaluation of new and existing chemical substances assisting in their safety assessment. -All effects relating to human health and environmental toxicity and fate -Prediction of toxicity, metabolism, fate and physico-chemical properties -The development of models from read-across, (Q)SARs, PBPK, QIVIVE, Multi-Scale Models -Big Data in toxicology: integration, management, analysis -Implementation of models through AOPs, IATA, TTC -Regulatory acceptance of models: evaluation, verification and validation -From metals, to small organic molecules to nanoparticles -Pharmaceuticals, pesticides, foods, cosmetics, fine chemicals -Bringing together the views of industry, regulators, academia, NGOs