基于区域自由元法的二维弹塑性问题数值分析

IF 2.8 3区 工程技术 Q2 MECHANICS
Yi-Fan Wang , Xiao-Wei Gao , Bing-Bing Xu , Hai-Feng Peng
{"title":"基于区域自由元法的二维弹塑性问题数值分析","authors":"Yi-Fan Wang ,&nbsp;Xiao-Wei Gao ,&nbsp;Bing-Bing Xu ,&nbsp;Hai-Feng Peng","doi":"10.1016/j.ijnonlinmec.2025.105102","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a weak-form numerical method, the zonal free element method (ZFrEM) is introduced to solve two-dimensional elastoplastic problems. In ZFrEM, the whole domain is divided into several sub-domains, and then a series of points are used to discretize each sub-domain. The Lagrange isoparametric element concept in the finite element method (FEM) is employed to form the collocation element for each collocation node with the neighboring points, and the system equations are generated with the point-by-point. The continuous model separates strain into elastic and plastic components, ensuring that stress variation is solely dependent on the elastic component of the strain, which is consistent with classical elasticity theory, and assuming that plastic strain is independent of stress increments, which results in a nonlinear system of equations with the coefficient matrix dependent on the current incremental stress state. For the nodes in the plastic state, a stress regression technique aligns stresses with defined yield surfaces. Three numerical examples are given to verify the accuracy and convergence of the present method for solving the elastoplastic problems.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"175 ","pages":"Article 105102"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical analysis of two-dimensional elastoplastic problems based on zonal free element method\",\"authors\":\"Yi-Fan Wang ,&nbsp;Xiao-Wei Gao ,&nbsp;Bing-Bing Xu ,&nbsp;Hai-Feng Peng\",\"doi\":\"10.1016/j.ijnonlinmec.2025.105102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, a weak-form numerical method, the zonal free element method (ZFrEM) is introduced to solve two-dimensional elastoplastic problems. In ZFrEM, the whole domain is divided into several sub-domains, and then a series of points are used to discretize each sub-domain. The Lagrange isoparametric element concept in the finite element method (FEM) is employed to form the collocation element for each collocation node with the neighboring points, and the system equations are generated with the point-by-point. The continuous model separates strain into elastic and plastic components, ensuring that stress variation is solely dependent on the elastic component of the strain, which is consistent with classical elasticity theory, and assuming that plastic strain is independent of stress increments, which results in a nonlinear system of equations with the coefficient matrix dependent on the current incremental stress state. For the nodes in the plastic state, a stress regression technique aligns stresses with defined yield surfaces. Three numerical examples are given to verify the accuracy and convergence of the present method for solving the elastoplastic problems.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"175 \",\"pages\":\"Article 105102\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746225000903\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225000903","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文引入一种弱形式的数值方法——带状自由单元法(ZFrEM)来求解二维弹塑性问题。在ZFrEM中,将整个域划分为几个子域,然后用一系列的点对每个子域进行离散。采用有限元法中的拉格朗日等参单元概念,对每个配置节点与相邻点形成配置单元,逐点生成系统方程。连续模型将应变分为弹性和塑性两部分,保证应力变化完全依赖于应变的弹性分量,这与经典弹性理论相一致,并假设塑性应变与应力增量无关,从而得到一个非线性方程组,其系数矩阵依赖于当前的增量应力状态。对于处于塑性状态的节点,应力回归技术将应力与定义的屈服面对齐。给出了三个数值算例,验证了该方法求解弹塑性问题的准确性和收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical analysis of two-dimensional elastoplastic problems based on zonal free element method
In this paper, a weak-form numerical method, the zonal free element method (ZFrEM) is introduced to solve two-dimensional elastoplastic problems. In ZFrEM, the whole domain is divided into several sub-domains, and then a series of points are used to discretize each sub-domain. The Lagrange isoparametric element concept in the finite element method (FEM) is employed to form the collocation element for each collocation node with the neighboring points, and the system equations are generated with the point-by-point. The continuous model separates strain into elastic and plastic components, ensuring that stress variation is solely dependent on the elastic component of the strain, which is consistent with classical elasticity theory, and assuming that plastic strain is independent of stress increments, which results in a nonlinear system of equations with the coefficient matrix dependent on the current incremental stress state. For the nodes in the plastic state, a stress regression technique aligns stresses with defined yield surfaces. Three numerical examples are given to verify the accuracy and convergence of the present method for solving the elastoplastic problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信