化学反应气体的非定常一维流动:一类强爆炸问题的群分析与求解

IF 2.8 3区 工程技术 Q2 MECHANICS
Yu.N. Grigoriev , E.I. Kaptsov , S.V. Meleshko
{"title":"化学反应气体的非定常一维流动:一类强爆炸问题的群分析与求解","authors":"Yu.N. Grigoriev ,&nbsp;E.I. Kaptsov ,&nbsp;S.V. Meleshko","doi":"10.1016/j.ijnonlinmec.2025.105100","DOIUrl":null,"url":null,"abstract":"<div><div>This work analyzes a system describing the motion of a two-component chemically reacting gas. We provide a complete group classification, enabling the identification of self-similar solutions to address the strong explosion problem. This approach allows for the examination of real Arrhenius-type chemical kinetics. Instead of solving a complex system of determining equations for admitted Lie groups, we employ an alternative method based on the system’s equivalence transformations. The strong explosion problem is studied, and, as in the classical case, the solution is reduced to integrating a system of ordinary differential equations in self-similar variables, which differ from the classical case. The results are illustrated with visual representations.</div></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"175 ","pages":"Article 105100"},"PeriodicalIF":2.8000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsteady one-dimensional flows of chemically reacting gas: Group analysis and solution of a strong explosion problem\",\"authors\":\"Yu.N. Grigoriev ,&nbsp;E.I. Kaptsov ,&nbsp;S.V. Meleshko\",\"doi\":\"10.1016/j.ijnonlinmec.2025.105100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work analyzes a system describing the motion of a two-component chemically reacting gas. We provide a complete group classification, enabling the identification of self-similar solutions to address the strong explosion problem. This approach allows for the examination of real Arrhenius-type chemical kinetics. Instead of solving a complex system of determining equations for admitted Lie groups, we employ an alternative method based on the system’s equivalence transformations. The strong explosion problem is studied, and, as in the classical case, the solution is reduced to integrating a system of ordinary differential equations in self-similar variables, which differ from the classical case. The results are illustrated with visual representations.</div></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"175 \",\"pages\":\"Article 105100\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746225000885\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746225000885","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了一个描述双组分化学反应气体运动的系统。我们提供了一个完整的组分类,使识别自相似的解决方案,以解决强爆炸问题。这种方法允许检验真正的阿伦尼乌斯型化学动力学。我们采用了一种基于系统等价变换的替代方法,而不是求解一个复杂的系统来确定允许李群的方程。研究了强爆炸问题,与经典情况一样,将其解简化为不同于经典情况的自相似变量常微分方程组的积分。结果用视觉表示加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsteady one-dimensional flows of chemically reacting gas: Group analysis and solution of a strong explosion problem
This work analyzes a system describing the motion of a two-component chemically reacting gas. We provide a complete group classification, enabling the identification of self-similar solutions to address the strong explosion problem. This approach allows for the examination of real Arrhenius-type chemical kinetics. Instead of solving a complex system of determining equations for admitted Lie groups, we employ an alternative method based on the system’s equivalence transformations. The strong explosion problem is studied, and, as in the classical case, the solution is reduced to integrating a system of ordinary differential equations in self-similar variables, which differ from the classical case. The results are illustrated with visual representations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
9.40%
发文量
192
审稿时长
67 days
期刊介绍: The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear. The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas. Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信