{"title":"基于卫星图像的时间序列分类中无监督域自适应的自关注和频率增强","authors":"David Gackstetter , Kang Yu , Marco Körner","doi":"10.1016/j.isprsjprs.2025.03.024","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing availability of Earth observation data in recent years, the development of deep learning algorithms for the classification of satellite image time series (SITS) has substantially progressed. Yet, when encountering settings of lacking target labels and distinct feature variations, even the latest classification algorithms may perform poorly in transferring knowledge from a trained dataset to an unknown target dataset, despite similar or even identical label sets. The research field of unsupervised domain adaptation (UDA) focuses on methods to overcome these challenges by providing algorithms that explicitly learn domain shifts between different data domains in the absence of target-labeled data. Building upon recent advances on generic UDA research in time series settings, we propose RAINCOAT-SRS, an enhancement of the frequency-augmented UDA-algorithm RAINCOAT specifically for the SITS domain. To evaluate the default and adjusted model variants, we designed several closed-label set, cross-regional and multi-temporal crop type mapping experiments, which represent common sub-problems of UDA in SITS. We first benchmark RAINCOAT against TimeMatch as a leading algorithm in this application context. Subsequently, we explored different encoder-to-decoder constellations as architectural enhancements. These analyses revealed that a combination of an self-attention-based encoder with the default decoder yields a performance increase to the standard algorithm of up to 6 % in average f1-score, and to TimeMatch by up to 24 %. Beyond, we assessed the impact of the frequency feature and SITS-specific feature extensions by integrating weather data, which both showed to improve classification accuracy only in individual sub-experiments however not consistently across the entire scope of scenarios. Finally, we outline key factors influencing the transferability, thereby emphasizing the major importance of domain-overarching stability of class-relative, structural patterns rather than of collective, linear shifts between domains. Through this research, we introduce RAINCOAT-SRS, a novel model for UDA in SITS, designed to advance generalization in remote sensing by enabling more comprehensive cross-regional and multi-temporal SITS experiments in face of lacking target-labeled data.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"224 ","pages":"Pages 113-132"},"PeriodicalIF":10.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-attention and frequency-augmentation for unsupervised domain adaptation in satellite image-based time series classification\",\"authors\":\"David Gackstetter , Kang Yu , Marco Körner\",\"doi\":\"10.1016/j.isprsjprs.2025.03.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the increasing availability of Earth observation data in recent years, the development of deep learning algorithms for the classification of satellite image time series (SITS) has substantially progressed. Yet, when encountering settings of lacking target labels and distinct feature variations, even the latest classification algorithms may perform poorly in transferring knowledge from a trained dataset to an unknown target dataset, despite similar or even identical label sets. The research field of unsupervised domain adaptation (UDA) focuses on methods to overcome these challenges by providing algorithms that explicitly learn domain shifts between different data domains in the absence of target-labeled data. Building upon recent advances on generic UDA research in time series settings, we propose RAINCOAT-SRS, an enhancement of the frequency-augmented UDA-algorithm RAINCOAT specifically for the SITS domain. To evaluate the default and adjusted model variants, we designed several closed-label set, cross-regional and multi-temporal crop type mapping experiments, which represent common sub-problems of UDA in SITS. We first benchmark RAINCOAT against TimeMatch as a leading algorithm in this application context. Subsequently, we explored different encoder-to-decoder constellations as architectural enhancements. These analyses revealed that a combination of an self-attention-based encoder with the default decoder yields a performance increase to the standard algorithm of up to 6 % in average f1-score, and to TimeMatch by up to 24 %. Beyond, we assessed the impact of the frequency feature and SITS-specific feature extensions by integrating weather data, which both showed to improve classification accuracy only in individual sub-experiments however not consistently across the entire scope of scenarios. Finally, we outline key factors influencing the transferability, thereby emphasizing the major importance of domain-overarching stability of class-relative, structural patterns rather than of collective, linear shifts between domains. Through this research, we introduce RAINCOAT-SRS, a novel model for UDA in SITS, designed to advance generalization in remote sensing by enabling more comprehensive cross-regional and multi-temporal SITS experiments in face of lacking target-labeled data.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"224 \",\"pages\":\"Pages 113-132\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271625001224\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271625001224","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Self-attention and frequency-augmentation for unsupervised domain adaptation in satellite image-based time series classification
With the increasing availability of Earth observation data in recent years, the development of deep learning algorithms for the classification of satellite image time series (SITS) has substantially progressed. Yet, when encountering settings of lacking target labels and distinct feature variations, even the latest classification algorithms may perform poorly in transferring knowledge from a trained dataset to an unknown target dataset, despite similar or even identical label sets. The research field of unsupervised domain adaptation (UDA) focuses on methods to overcome these challenges by providing algorithms that explicitly learn domain shifts between different data domains in the absence of target-labeled data. Building upon recent advances on generic UDA research in time series settings, we propose RAINCOAT-SRS, an enhancement of the frequency-augmented UDA-algorithm RAINCOAT specifically for the SITS domain. To evaluate the default and adjusted model variants, we designed several closed-label set, cross-regional and multi-temporal crop type mapping experiments, which represent common sub-problems of UDA in SITS. We first benchmark RAINCOAT against TimeMatch as a leading algorithm in this application context. Subsequently, we explored different encoder-to-decoder constellations as architectural enhancements. These analyses revealed that a combination of an self-attention-based encoder with the default decoder yields a performance increase to the standard algorithm of up to 6 % in average f1-score, and to TimeMatch by up to 24 %. Beyond, we assessed the impact of the frequency feature and SITS-specific feature extensions by integrating weather data, which both showed to improve classification accuracy only in individual sub-experiments however not consistently across the entire scope of scenarios. Finally, we outline key factors influencing the transferability, thereby emphasizing the major importance of domain-overarching stability of class-relative, structural patterns rather than of collective, linear shifts between domains. Through this research, we introduce RAINCOAT-SRS, a novel model for UDA in SITS, designed to advance generalization in remote sensing by enabling more comprehensive cross-regional and multi-temporal SITS experiments in face of lacking target-labeled data.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.