通过时间间隔从微球过渡到微棒:塑造用于储能装置的钴钒氧化物

IF 5.3 2区 化学 Q2 CHEMISTRY, PHYSICAL
Sachin S. Pujari , R.A. Kadam , T.V.M. Sreekanth , S.L. Kadam , A.M. Teli , Abdullah A. Al-Kahtani , D. Radhalayam , D.K Shin , Manesh A. Yewale
{"title":"通过时间间隔从微球过渡到微棒:塑造用于储能装置的钴钒氧化物","authors":"Sachin S. Pujari ,&nbsp;R.A. Kadam ,&nbsp;T.V.M. Sreekanth ,&nbsp;S.L. Kadam ,&nbsp;A.M. Teli ,&nbsp;Abdullah A. Al-Kahtani ,&nbsp;D. Radhalayam ,&nbsp;D.K Shin ,&nbsp;Manesh A. Yewale","doi":"10.1016/j.molliq.2025.127513","DOIUrl":null,"url":null,"abstract":"<div><div>Developing self-supported electrode material in the absence of electro-inert binders considering the effortless transfer of charges and manipulating physicochemical properties of electrodes in energy storage devices is essential. This investigation focuses on the facile hydrothermal synthesis of a cobalt vanadium oxide (Co<sub>3</sub>V<sub>2</sub>O<sub>8</sub>) microstructure with tailored properties for supercapacitor application. Morphological change from microballs to microrods is detected in prepared Co<sub>3</sub>V<sub>2</sub>O<sub>8</sub> microstructure owing to reaction time variation. The synthesized CVO-AFU-7 h electrode material displays superior supercapacitive performance of 318 F/g at 3 mA/cm<sup>2</sup> scan rate. Furthermore, the solid-state hybrid supercapacitor (SSHSc) device revealed superior energy storage capabilities, delivering a high energy density of 3.21 Wh/kg at a power density of 169.69 W/kg. The SSHSc device exhibits long lasting cyclability, retaining 79 % of its initial capacity after 10,000 cycles. Moreover, its practical utility is demonstrated by powering three LEDs simultaneously, indicating strong potential for industrial applications.</div></div>","PeriodicalId":371,"journal":{"name":"Journal of Molecular Liquids","volume":"428 ","pages":"Article 127513"},"PeriodicalIF":5.3000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transitioning from microballs to microrods via time interval: Shaping cobalt vanadium oxide for use in energy storage devices\",\"authors\":\"Sachin S. Pujari ,&nbsp;R.A. Kadam ,&nbsp;T.V.M. Sreekanth ,&nbsp;S.L. Kadam ,&nbsp;A.M. Teli ,&nbsp;Abdullah A. Al-Kahtani ,&nbsp;D. Radhalayam ,&nbsp;D.K Shin ,&nbsp;Manesh A. Yewale\",\"doi\":\"10.1016/j.molliq.2025.127513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing self-supported electrode material in the absence of electro-inert binders considering the effortless transfer of charges and manipulating physicochemical properties of electrodes in energy storage devices is essential. This investigation focuses on the facile hydrothermal synthesis of a cobalt vanadium oxide (Co<sub>3</sub>V<sub>2</sub>O<sub>8</sub>) microstructure with tailored properties for supercapacitor application. Morphological change from microballs to microrods is detected in prepared Co<sub>3</sub>V<sub>2</sub>O<sub>8</sub> microstructure owing to reaction time variation. The synthesized CVO-AFU-7 h electrode material displays superior supercapacitive performance of 318 F/g at 3 mA/cm<sup>2</sup> scan rate. Furthermore, the solid-state hybrid supercapacitor (SSHSc) device revealed superior energy storage capabilities, delivering a high energy density of 3.21 Wh/kg at a power density of 169.69 W/kg. The SSHSc device exhibits long lasting cyclability, retaining 79 % of its initial capacity after 10,000 cycles. Moreover, its practical utility is demonstrated by powering three LEDs simultaneously, indicating strong potential for industrial applications.</div></div>\",\"PeriodicalId\":371,\"journal\":{\"name\":\"Journal of Molecular Liquids\",\"volume\":\"428 \",\"pages\":\"Article 127513\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Liquids\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167732225006804\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Liquids","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167732225006804","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在没有电惰性粘合剂的情况下,考虑到电荷的轻松转移和控制储能装置中电极的物理化学性质,开发自支撑电极材料是必不可少的。本研究的重点是水热合成具有定制性能的钴钒氧化物(Co3V2O8)微结构,用于超级电容器的应用。由于反应时间的变化,制备的Co3V2O8微观结构发生了从微球到微棒的形态变化。合成的CVO-AFU-7 h电极材料在3 mA/cm2扫描速率下显示出318 F/g的超电容性能。此外,固态混合超级电容器(SSHSc)器件显示出卓越的能量存储能力,在169.69 W/kg的功率密度下提供3.21 Wh/kg的高能量密度。SSHSc器件表现出持久的可循环性,在10,000次循环后仍保持其初始容量的79%。此外,它的实际效用通过同时为三个led供电来证明,表明工业应用的强大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transitioning from microballs to microrods via time interval: Shaping cobalt vanadium oxide for use in energy storage devices
Developing self-supported electrode material in the absence of electro-inert binders considering the effortless transfer of charges and manipulating physicochemical properties of electrodes in energy storage devices is essential. This investigation focuses on the facile hydrothermal synthesis of a cobalt vanadium oxide (Co3V2O8) microstructure with tailored properties for supercapacitor application. Morphological change from microballs to microrods is detected in prepared Co3V2O8 microstructure owing to reaction time variation. The synthesized CVO-AFU-7 h electrode material displays superior supercapacitive performance of 318 F/g at 3 mA/cm2 scan rate. Furthermore, the solid-state hybrid supercapacitor (SSHSc) device revealed superior energy storage capabilities, delivering a high energy density of 3.21 Wh/kg at a power density of 169.69 W/kg. The SSHSc device exhibits long lasting cyclability, retaining 79 % of its initial capacity after 10,000 cycles. Moreover, its practical utility is demonstrated by powering three LEDs simultaneously, indicating strong potential for industrial applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Molecular Liquids
Journal of Molecular Liquids 化学-物理:原子、分子和化学物理
CiteScore
10.30
自引率
16.70%
发文量
2597
审稿时长
78 days
期刊介绍: The journal includes papers in the following areas: – Simple organic liquids and mixtures – Ionic liquids – Surfactant solutions (including micelles and vesicles) and liquid interfaces – Colloidal solutions and nanoparticles – Thermotropic and lyotropic liquid crystals – Ferrofluids – Water, aqueous solutions and other hydrogen-bonded liquids – Lubricants, polymer solutions and melts – Molten metals and salts – Phase transitions and critical phenomena in liquids and confined fluids – Self assembly in complex liquids.– Biomolecules in solution The emphasis is on the molecular (or microscopic) understanding of particular liquids or liquid systems, especially concerning structure, dynamics and intermolecular forces. The experimental techniques used may include: – Conventional spectroscopy (mid-IR and far-IR, Raman, NMR, etc.) – Non-linear optics and time resolved spectroscopy (psec, fsec, asec, ISRS, etc.) – Light scattering (Rayleigh, Brillouin, PCS, etc.) – Dielectric relaxation – X-ray and neutron scattering and diffraction. Experimental studies, computer simulations (MD or MC) and analytical theory will be considered for publication; papers just reporting experimental results that do not contribute to the understanding of the fundamentals of molecular and ionic liquids will not be accepted. Only papers of a non-routine nature and advancing the field will be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信