Y2NiIrO6的电子和磁性相变、优化的MAE/ TC和高热电响应:应变效应

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Usman Saeed , A. Islam , Bassem F. Felemban , Hafiz Tauqeer Ali , S. Nazir
{"title":"Y2NiIrO6的电子和磁性相变、优化的MAE/ TC和高热电响应:应变效应","authors":"Usman Saeed ,&nbsp;A. Islam ,&nbsp;Bassem F. Felemban ,&nbsp;Hafiz Tauqeer Ali ,&nbsp;S. Nazir","doi":"10.1016/j.commatsci.2025.113880","DOIUrl":null,"url":null,"abstract":"<div><div>We explore the biaxial ([110]) strain consequences on the distinct features of the pristine (prist.) Y<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>NiIrO<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> motif using <em>ab</em>-<em>initio</em> calculations. The anomalous <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi><mo>.</mo></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> state of Ir<span><math><msup><mrow></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msup></math></span>, leads the system into a Mott-insulating (MI) state attaining an energy gap (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>) of 0.21 eV with a ferrimagnetic (FiM) phase, which is ultimately caused by anti-ferromagnetic (AFM) coupling between the half-filled Ni<span><math><mrow><msup><mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> and partially-filled Ir<span><math><mrow><msup><mrow></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msup><mn>5</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> orbitals, via oxygen 2<span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> states. Remarkably, lattice thermal conductivity (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) is computed utilizing the Slack model, which significantly lowers the figure of merit (ZT) from 0.75 (excluding <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) to 0.34 (including <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) at 300 K. Interestingly, a reasonable ZT of 0.58 is achieved above room temperature (500 K). Moreover, the computed partial spin moments (<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) for the Ni<span><math><msup><mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msup></math></span> and Ir<span><math><msup><mrow></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msup></math></span> ions holding high spin and low spin states of S <span><math><mrow><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> are + 1.67 and <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>53</mn><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></math></span>, respectively. The easy magnetic axis is determined to be the <span><math><mi>b</mi></math></span>-axis, which produces a significant magnetic anisotropy energy (MAE) constant of <span><math><mrow><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> erg/cm<sup>3</sup> keeping a Curie temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>) of 198 K. Strikingly, the system demonstrated magnetic transitions from FiM to FM and FiM to AFM at the critical + 5% and + 4% tensile strains within the GGA<span><math><mrow><mo>+</mo><mi>U</mi></mrow></math></span> and GGA<span><math><mrow><mo>+</mo><mi>U</mi><mo>+</mo></mrow></math></span>SOC methods, respectively. Likewise, a Mott-insulator-to-half-metal transition is obtained at a crucial compressive strain of <span><math><mo>−</mo></math></span>6% with a robust FiM state. Moreover, our results revealed that compressive strain enhances the structural distortions, which substantially improved the MAE and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> values up to 28.9 meV and 265 K, respectively, indicating the system to be the best candidate for magnetic memory devices as well as for thermoelectric applications.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"253 ","pages":"Article 113880"},"PeriodicalIF":3.1000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic and magnetic phase transitions, optimized MAE/ TC, and high thermoelectric response in Y2NiIrO6: Strain effects\",\"authors\":\"Usman Saeed ,&nbsp;A. Islam ,&nbsp;Bassem F. Felemban ,&nbsp;Hafiz Tauqeer Ali ,&nbsp;S. Nazir\",\"doi\":\"10.1016/j.commatsci.2025.113880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We explore the biaxial ([110]) strain consequences on the distinct features of the pristine (prist.) Y<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>NiIrO<span><math><msub><mrow></mrow><mrow><mn>6</mn></mrow></msub></math></span> motif using <em>ab</em>-<em>initio</em> calculations. The anomalous <span><math><mrow><msub><mrow><mi>J</mi></mrow><mrow><mi>e</mi><mi>f</mi><mi>f</mi><mo>.</mo></mrow></msub><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> state of Ir<span><math><msup><mrow></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msup></math></span>, leads the system into a Mott-insulating (MI) state attaining an energy gap (<span><math><msub><mrow><mi>E</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span>) of 0.21 eV with a ferrimagnetic (FiM) phase, which is ultimately caused by anti-ferromagnetic (AFM) coupling between the half-filled Ni<span><math><mrow><msup><mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msup><mn>3</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> and partially-filled Ir<span><math><mrow><msup><mrow></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msup><mn>5</mn><msup><mrow><mi>d</mi></mrow><mrow><mn>5</mn></mrow></msup></mrow></math></span> orbitals, via oxygen 2<span><math><msup><mrow><mi>p</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> states. Remarkably, lattice thermal conductivity (<span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) is computed utilizing the Slack model, which significantly lowers the figure of merit (ZT) from 0.75 (excluding <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) to 0.34 (including <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>L</mi></mrow></msub></math></span>) at 300 K. Interestingly, a reasonable ZT of 0.58 is achieved above room temperature (500 K). Moreover, the computed partial spin moments (<span><math><msub><mrow><mi>m</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) for the Ni<span><math><msup><mrow></mrow><mrow><mo>+</mo><mn>2</mn></mrow></msup></math></span> and Ir<span><math><msup><mrow></mrow><mrow><mo>+</mo><mn>4</mn></mrow></msup></math></span> ions holding high spin and low spin states of S <span><math><mrow><mo>=</mo><mn>1</mn></mrow></math></span> and <span><math><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span> are + 1.67 and <span><math><mrow><mo>−</mo><mn>0</mn><mo>.</mo><mn>53</mn><msub><mrow><mi>μ</mi></mrow><mrow><mi>B</mi></mrow></msub></mrow></math></span>, respectively. The easy magnetic axis is determined to be the <span><math><mi>b</mi></math></span>-axis, which produces a significant magnetic anisotropy energy (MAE) constant of <span><math><mrow><mn>1</mn><mo>.</mo><mn>7</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>8</mn></mrow></msup></mrow></math></span> erg/cm<sup>3</sup> keeping a Curie temperature (<span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span>) of 198 K. Strikingly, the system demonstrated magnetic transitions from FiM to FM and FiM to AFM at the critical + 5% and + 4% tensile strains within the GGA<span><math><mrow><mo>+</mo><mi>U</mi></mrow></math></span> and GGA<span><math><mrow><mo>+</mo><mi>U</mi><mo>+</mo></mrow></math></span>SOC methods, respectively. Likewise, a Mott-insulator-to-half-metal transition is obtained at a crucial compressive strain of <span><math><mo>−</mo></math></span>6% with a robust FiM state. Moreover, our results revealed that compressive strain enhances the structural distortions, which substantially improved the MAE and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>C</mi></mrow></msub></math></span> values up to 28.9 meV and 265 K, respectively, indicating the system to be the best candidate for magnetic memory devices as well as for thermoelectric applications.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"253 \",\"pages\":\"Article 113880\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092702562500223X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702562500223X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们探讨了双轴([110])应变对原始(石柱)不同特征的影响。Y2NiIrO6 motif采用ab-initio计算。反常的杰夫。=12的Ir+4态,导致系统进入莫特绝缘(MI)状态,与铁磁(FiM)相形成0.21 eV的能隙(Eg),这最终是由半填充的Ni+23d8和部分填充的Ir+45d5轨道通过氧2p2态之间的反铁磁(AFM)耦合引起的。值得注意的是,晶格导热系数(κL)是利用Slack模型计算的,该模型显著降低了300 K时的性能值(ZT),从0.75(不包括κL)降至0.34(包括κL)。有趣的是,在室温(500 K)以上,ZT达到了合理的0.58。此外,在S =1和S = 12的高自旋态下,Ni+2和Ir+4离子的部分自旋矩(ms)分别为+ 1.67和- 0.53μB。易磁轴为b轴,其磁各向异性能(MAE)常数为1.7×108 erg/cm3,居里温度(TC)为198 K。引人注目的是,在GGA+U和GGA+U+SOC方法中,系统分别在临界+ 5%和+ 4%拉伸应变下显示了从薄膜到FM和从薄膜到AFM的磁转变。同样,在临界压缩应变为- 6%时,获得了莫特绝缘体到半金属的转变,具有鲁棒的薄膜状态。此外,我们的研究结果表明,压缩应变增强了结构畸变,大大提高了MAE和TC值,分别达到28.9 meV和265 K,表明该系统是磁存储器件和热电应用的最佳候选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electronic and magnetic phase transitions, optimized MAE/ TC, and high thermoelectric response in Y2NiIrO6: Strain effects

Electronic and magnetic phase transitions, optimized MAE/ TC, and high thermoelectric response in Y2NiIrO6: Strain effects
We explore the biaxial ([110]) strain consequences on the distinct features of the pristine (prist.) Y2NiIrO6 motif using ab-initio calculations. The anomalous Jeff.=12 state of Ir+4, leads the system into a Mott-insulating (MI) state attaining an energy gap (Eg) of 0.21 eV with a ferrimagnetic (FiM) phase, which is ultimately caused by anti-ferromagnetic (AFM) coupling between the half-filled Ni+23d8 and partially-filled Ir+45d5 orbitals, via oxygen 2p2 states. Remarkably, lattice thermal conductivity (κL) is computed utilizing the Slack model, which significantly lowers the figure of merit (ZT) from 0.75 (excluding κL) to 0.34 (including κL) at 300 K. Interestingly, a reasonable ZT of 0.58 is achieved above room temperature (500 K). Moreover, the computed partial spin moments (ms) for the Ni+2 and Ir+4 ions holding high spin and low spin states of S =1 and 12 are + 1.67 and 0.53μB, respectively. The easy magnetic axis is determined to be the b-axis, which produces a significant magnetic anisotropy energy (MAE) constant of 1.7×108 erg/cm3 keeping a Curie temperature (TC) of 198 K. Strikingly, the system demonstrated magnetic transitions from FiM to FM and FiM to AFM at the critical + 5% and + 4% tensile strains within the GGA+U and GGA+U+SOC methods, respectively. Likewise, a Mott-insulator-to-half-metal transition is obtained at a crucial compressive strain of 6% with a robust FiM state. Moreover, our results revealed that compressive strain enhances the structural distortions, which substantially improved the MAE and TC values up to 28.9 meV and 265 K, respectively, indicating the system to be the best candidate for magnetic memory devices as well as for thermoelectric applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信