Fahima Hossain, Rajib Kumar Halder, Mohammed Nasir Uddin
{"title":"基于集成机器学习的阿尔茨海默氏症阶段识别自适应误差最小化框架","authors":"Fahima Hossain, Rajib Kumar Halder, Mohammed Nasir Uddin","doi":"10.1016/j.ibmed.2025.100243","DOIUrl":null,"url":null,"abstract":"<div><div>Alzheimer's disease (AD) is a degenerative neurological condition that impairs cognitive functioning. Early detection is critical for slowing disease progression and limiting brain damage. Although machine learning and deep learning models help identify Alzheimer's disease, their accuracy and efficiency are widely questioned. This study provides an integrated system for classifying four AD phases from 6400 MRI scans using pre-trained neural networks and machine learning classifiers. Preprocessing steps include noise removal, image enhancement (AGCWD, Bilateral Filter), and segmentation. Intensity normalization and data augmentation methods are applied to improve model generalization. Two models are developed: the first employs pre-trained neural net-works (VGG16, VGG19, DenseNet201, ResNet50, EfficientNetV7, InceptionV3, InceptionResNetV2, and MobileNet) for both feature extraction and classification. In contrast, the second integrates features from these networks with machine learning classifiers (XGBoost, Random Forest, SVM, KNN, Gradient Boosting, AdaBoost, Decision Tree, Linear Discriminant Analysis, Logistic Regression, and Multilayer Perceptron). The second model incorporates an adaptive error minimization sys-tem for enhanced accuracy. VGG16 achieved the highest accuracy (99.61 % training and 97.94 % testing), whereas VGG19+MLP with adaptive error minimization achieved 97.08 %, exhibiting superior AD classification ability.</div></div>","PeriodicalId":73399,"journal":{"name":"Intelligence-based medicine","volume":"11 ","pages":"Article 100243"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An integrated machine learning based adaptive error minimization framework for Alzheimer's stage identification\",\"authors\":\"Fahima Hossain, Rajib Kumar Halder, Mohammed Nasir Uddin\",\"doi\":\"10.1016/j.ibmed.2025.100243\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Alzheimer's disease (AD) is a degenerative neurological condition that impairs cognitive functioning. Early detection is critical for slowing disease progression and limiting brain damage. Although machine learning and deep learning models help identify Alzheimer's disease, their accuracy and efficiency are widely questioned. This study provides an integrated system for classifying four AD phases from 6400 MRI scans using pre-trained neural networks and machine learning classifiers. Preprocessing steps include noise removal, image enhancement (AGCWD, Bilateral Filter), and segmentation. Intensity normalization and data augmentation methods are applied to improve model generalization. Two models are developed: the first employs pre-trained neural net-works (VGG16, VGG19, DenseNet201, ResNet50, EfficientNetV7, InceptionV3, InceptionResNetV2, and MobileNet) for both feature extraction and classification. In contrast, the second integrates features from these networks with machine learning classifiers (XGBoost, Random Forest, SVM, KNN, Gradient Boosting, AdaBoost, Decision Tree, Linear Discriminant Analysis, Logistic Regression, and Multilayer Perceptron). The second model incorporates an adaptive error minimization sys-tem for enhanced accuracy. VGG16 achieved the highest accuracy (99.61 % training and 97.94 % testing), whereas VGG19+MLP with adaptive error minimization achieved 97.08 %, exhibiting superior AD classification ability.</div></div>\",\"PeriodicalId\":73399,\"journal\":{\"name\":\"Intelligence-based medicine\",\"volume\":\"11 \",\"pages\":\"Article 100243\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligence-based medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266652122500047X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligence-based medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266652122500047X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An integrated machine learning based adaptive error minimization framework for Alzheimer's stage identification
Alzheimer's disease (AD) is a degenerative neurological condition that impairs cognitive functioning. Early detection is critical for slowing disease progression and limiting brain damage. Although machine learning and deep learning models help identify Alzheimer's disease, their accuracy and efficiency are widely questioned. This study provides an integrated system for classifying four AD phases from 6400 MRI scans using pre-trained neural networks and machine learning classifiers. Preprocessing steps include noise removal, image enhancement (AGCWD, Bilateral Filter), and segmentation. Intensity normalization and data augmentation methods are applied to improve model generalization. Two models are developed: the first employs pre-trained neural net-works (VGG16, VGG19, DenseNet201, ResNet50, EfficientNetV7, InceptionV3, InceptionResNetV2, and MobileNet) for both feature extraction and classification. In contrast, the second integrates features from these networks with machine learning classifiers (XGBoost, Random Forest, SVM, KNN, Gradient Boosting, AdaBoost, Decision Tree, Linear Discriminant Analysis, Logistic Regression, and Multilayer Perceptron). The second model incorporates an adaptive error minimization sys-tem for enhanced accuracy. VGG16 achieved the highest accuracy (99.61 % training and 97.94 % testing), whereas VGG19+MLP with adaptive error minimization achieved 97.08 %, exhibiting superior AD classification ability.