运动边界流动问题的欧拉有限元法中瞬时压力的稳定性

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Maxim Olshanskii , Henry von Wahl
{"title":"运动边界流动问题的欧拉有限元法中瞬时压力的稳定性","authors":"Maxim Olshanskii ,&nbsp;Henry von Wahl","doi":"10.1016/j.jcp.2025.113983","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on identifying the cause and proposing a remedy for the problem of spurious pressure oscillations in a sharp-interface immersed boundary finite element method for incompressible flow problems in moving domains. The numerical method belongs to the class of Eulerian unfitted finite element methods. It employs a cutFEM discretization in space and a standard BDF time-stepping scheme, enabled by a discrete extension of the solution from the physical domain into the ambient space using ghost-penalty stabilization. To investigate the origin of spurious temporal pressure oscillations, we revisit a finite element stability analysis for the steady domain case and extend it to derive a stability estimate for the pressure in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>-norm that is uniform with respect to discretization parameters. By identifying where the arguments fail in the context of a moving domain, we propose a variant of the method that ensures unconditional stability of the instantaneous pressure. As a result, the modified method eliminates spurious pressure oscillations. We also present extensive numerical studies aimed at illustrating our findings and exploring the effects of fluid viscosity, geometry approximation, mass conservation, discretization and stabilization parameters, and the choice of finite element spaces on the occurrence and magnitude of spurious temporal pressure oscillations. The results of the experiments demonstrate a significant improvement in the robustness and accuracy of the proposed method compared to existing approaches.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"533 ","pages":"Article 113983"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of instantaneous pressures in an Eulerian finite element method for moving boundary flow problems\",\"authors\":\"Maxim Olshanskii ,&nbsp;Henry von Wahl\",\"doi\":\"10.1016/j.jcp.2025.113983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper focuses on identifying the cause and proposing a remedy for the problem of spurious pressure oscillations in a sharp-interface immersed boundary finite element method for incompressible flow problems in moving domains. The numerical method belongs to the class of Eulerian unfitted finite element methods. It employs a cutFEM discretization in space and a standard BDF time-stepping scheme, enabled by a discrete extension of the solution from the physical domain into the ambient space using ghost-penalty stabilization. To investigate the origin of spurious temporal pressure oscillations, we revisit a finite element stability analysis for the steady domain case and extend it to derive a stability estimate for the pressure in the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span>-norm that is uniform with respect to discretization parameters. By identifying where the arguments fail in the context of a moving domain, we propose a variant of the method that ensures unconditional stability of the instantaneous pressure. As a result, the modified method eliminates spurious pressure oscillations. We also present extensive numerical studies aimed at illustrating our findings and exploring the effects of fluid viscosity, geometry approximation, mass conservation, discretization and stabilization parameters, and the choice of finite element spaces on the occurrence and magnitude of spurious temporal pressure oscillations. The results of the experiments demonstrate a significant improvement in the robustness and accuracy of the proposed method compared to existing approaches.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"533 \",\"pages\":\"Article 113983\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125002669\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002669","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文着重探讨了运动域不可压缩流动问题的锐利界面浸入边界有限元法中存在的伪压力振荡问题的原因并提出了解决方法。数值方法属于欧拉非拟合有限元法。它采用了空间中的cutFEM离散化和标准的BDF时间步进方案,通过使用幽灵惩罚稳定化将解决方案从物理域离散扩展到环境空间。为了研究伪时间压力振荡的起源,我们重新审视了稳定域情况下的有限元稳定性分析,并将其扩展到L∞(L2)范数中压力的稳定性估计,该估计相对于离散化参数是一致的。通过识别在移动域的背景下参数失败的地方,我们提出了一种确保瞬时压力无条件稳定的方法的变体。结果表明,改进后的方法消除了虚假的压力振荡。我们还提出了广泛的数值研究,旨在说明我们的发现,并探索流体粘度、几何近似、质量守恒、离散化和稳定参数以及有限元空间选择对虚假时间压力振荡的发生和大小的影响。实验结果表明,与现有方法相比,该方法在鲁棒性和准确性方面都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of instantaneous pressures in an Eulerian finite element method for moving boundary flow problems
This paper focuses on identifying the cause and proposing a remedy for the problem of spurious pressure oscillations in a sharp-interface immersed boundary finite element method for incompressible flow problems in moving domains. The numerical method belongs to the class of Eulerian unfitted finite element methods. It employs a cutFEM discretization in space and a standard BDF time-stepping scheme, enabled by a discrete extension of the solution from the physical domain into the ambient space using ghost-penalty stabilization. To investigate the origin of spurious temporal pressure oscillations, we revisit a finite element stability analysis for the steady domain case and extend it to derive a stability estimate for the pressure in the L(L2)-norm that is uniform with respect to discretization parameters. By identifying where the arguments fail in the context of a moving domain, we propose a variant of the method that ensures unconditional stability of the instantaneous pressure. As a result, the modified method eliminates spurious pressure oscillations. We also present extensive numerical studies aimed at illustrating our findings and exploring the effects of fluid viscosity, geometry approximation, mass conservation, discretization and stabilization parameters, and the choice of finite element spaces on the occurrence and magnitude of spurious temporal pressure oscillations. The results of the experiments demonstrate a significant improvement in the robustness and accuracy of the proposed method compared to existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信