湍流变密度流的势能节约有限元法:在冰川-峡湾环流中的应用

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Lukas Lundgren , Christian Helanow , Jonathan Wiskandt , Inga Monika Koszalka , Josefin Ahlkrona
{"title":"湍流变密度流的势能节约有限元法:在冰川-峡湾环流中的应用","authors":"Lukas Lundgren ,&nbsp;Christian Helanow ,&nbsp;Jonathan Wiskandt ,&nbsp;Inga Monika Koszalka ,&nbsp;Josefin Ahlkrona","doi":"10.1016/j.jcp.2025.113981","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce a continuous Galerkin finite element discretization of the non-hydrostatic Boussinesq approximation of the Navier-Stokes equations, suitable for various applications such as coastal ocean dynamics and ice-ocean interactions, among others. In particular, we introduce a consistent modification of the gravity force term which enhances conservation properties for Galerkin methods without strictly enforcing the divergence-free condition. We show that this modification results in a sharp energy estimate, including both kinetic and potential energy. Additionally, we propose a new, symmetric, tensor-based viscosity operator that is especially suitable for modeling turbulence in stratified flow. The viscosity coefficients are constructed using a residual-based shock-capturing method and the method conserves angular momentum and dissipates kinetic energy. We validate our proposed method through numerical tests and use it to model the ocean circulation and basal melting beneath the ice tongue of the Ryder Glacier and the adjacent Sherard Osborn Fjord in two dimensions on a fully unstructured mesh. Our results compare favorably with a standard numerical ocean model, showing better resolved turbulent flow features and reduced artificial diffusion.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"533 ","pages":"Article 113981"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A potential energy conserving finite element method for turbulent variable density flow: Application to glacier-fjord circulation\",\"authors\":\"Lukas Lundgren ,&nbsp;Christian Helanow ,&nbsp;Jonathan Wiskandt ,&nbsp;Inga Monika Koszalka ,&nbsp;Josefin Ahlkrona\",\"doi\":\"10.1016/j.jcp.2025.113981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce a continuous Galerkin finite element discretization of the non-hydrostatic Boussinesq approximation of the Navier-Stokes equations, suitable for various applications such as coastal ocean dynamics and ice-ocean interactions, among others. In particular, we introduce a consistent modification of the gravity force term which enhances conservation properties for Galerkin methods without strictly enforcing the divergence-free condition. We show that this modification results in a sharp energy estimate, including both kinetic and potential energy. Additionally, we propose a new, symmetric, tensor-based viscosity operator that is especially suitable for modeling turbulence in stratified flow. The viscosity coefficients are constructed using a residual-based shock-capturing method and the method conserves angular momentum and dissipates kinetic energy. We validate our proposed method through numerical tests and use it to model the ocean circulation and basal melting beneath the ice tongue of the Ryder Glacier and the adjacent Sherard Osborn Fjord in two dimensions on a fully unstructured mesh. Our results compare favorably with a standard numerical ocean model, showing better resolved turbulent flow features and reduced artificial diffusion.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"533 \",\"pages\":\"Article 113981\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999125002645\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125002645","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了Navier-Stokes方程的非流体静力Boussinesq近似的连续Galerkin有限元离散化,适用于沿海海洋动力学和冰-海洋相互作用等各种应用。特别地,我们引入了重力项的一致修正,在不严格执行无散度条件的情况下增强了伽辽金方法的守恒性。我们表明,这种修改导致了一个尖锐的能量估计,包括动能和势能。此外,我们提出了一个新的,对称的,基于张量的粘度算子,特别适合于模拟分层流动中的湍流。粘滞系数采用基于残差的冲击捕获方法构造,该方法保留了角动量并耗散了动能。我们通过数值试验验证了我们提出的方法,并将其用于在完全非结构化网格上二维模拟莱德冰川冰舌和邻近的谢拉德奥斯本峡湾下的海洋环流和基底融化。我们的结果与标准数值海洋模型比较有利,显示出更好的湍流特征和减少的人工扩散。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A potential energy conserving finite element method for turbulent variable density flow: Application to glacier-fjord circulation
We introduce a continuous Galerkin finite element discretization of the non-hydrostatic Boussinesq approximation of the Navier-Stokes equations, suitable for various applications such as coastal ocean dynamics and ice-ocean interactions, among others. In particular, we introduce a consistent modification of the gravity force term which enhances conservation properties for Galerkin methods without strictly enforcing the divergence-free condition. We show that this modification results in a sharp energy estimate, including both kinetic and potential energy. Additionally, we propose a new, symmetric, tensor-based viscosity operator that is especially suitable for modeling turbulence in stratified flow. The viscosity coefficients are constructed using a residual-based shock-capturing method and the method conserves angular momentum and dissipates kinetic energy. We validate our proposed method through numerical tests and use it to model the ocean circulation and basal melting beneath the ice tongue of the Ryder Glacier and the adjacent Sherard Osborn Fjord in two dimensions on a fully unstructured mesh. Our results compare favorably with a standard numerical ocean model, showing better resolved turbulent flow features and reduced artificial diffusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信