氨氢共混物在铁上热催化裂化的第一性原理研究(110)。2. 动力学

IF 3.2 3区 化学 Q2 CHEMISTRY, PHYSICAL
J. Mark P. Martirez*, Sophia Kurdziel and Emily A. Carter*, 
{"title":"氨氢共混物在铁上热催化裂化的第一性原理研究(110)。2. 动力学","authors":"J. Mark P. Martirez*,&nbsp;Sophia Kurdziel and Emily A. Carter*,&nbsp;","doi":"10.1021/acs.jpcc.4c0730310.1021/acs.jpcc.4c07303","DOIUrl":null,"url":null,"abstract":"<p >Ammonia (NH<sub>3</sub>) is an energy-rich molecule that is routinely synthesized from nitrogen (N<sub>2</sub>) and hydrogen (H<sub>2</sub>). NH<sub>3</sub>’s more favorable physical properties compared to H<sub>2</sub> suggests it may offer a way to more conveniently store, transport, and, when needed, extract H<sub>2</sub> via thermal decomposition. However, the high kinetic barrier and endoergicity to decompose to H<sub>2</sub> and N<sub>2</sub> require high temperatures. The standard reaction free energy indicates nearly 100% thermodynamic conversion to the diatomic molecules only at ∼673 K and higher. However, even at these temperatures, a catalyst, e.g., iron (Fe), is needed for favorable kinetic conversion. Here, we explore via density functional theory the kinetics of NH<sub>3</sub> decomposition on the most stable facet of body-centered cubic Fe, namely, (110), under typical high-temperature and finite-pressure operando conditions. We predict coverage-dependent energetics of elementary surface reactions, often neglected in atomic-scale modeling. From these models, we find the recombinative desorption of adsorbed N as N<sub>2</sub> is rate-determining at 573.15–773.15 K and even at an extreme case of 1173.15 K. From microkinetic modeling, we find that the steady-state turnover frequencies (TOFs) for N<sub>2</sub> and H<sub>2</sub> generation rates (<i>r</i><sub>H<sub>2</sub></sub>) depend exponentially on temperature. The catalyst achieves a steady-state TOF of 36.4 s<sup>–1</sup> and an <i>r</i><sub>H<sub>2</sub></sub> of 0.107 μmol cm<sup>–2</sup> s<sup>–1</sup> for a feed of 1.8 bar NH<sub>3</sub> with 0.2 bar H<sub>2</sub> at 1173.15 K. However, at 773.15 K, with the same feed composition and velocity, the steady-state TOF and <i>r</i><sub>H<sub>2</sub></sub> decrease to 0.14 s<sup>–1</sup> and 4.10 × 10<sup>–4</sup> μmol cm<sup>–2</sup> s<sup>–1</sup>, respectively, as the process is significantly hindered by slow N<sub>2</sub> desorption. Although at first glance counterintuitive, our simulations suggest that surface modifications that reduce Fe’s reactivity toward NH<i><sub><i>x</i></sub></i> species should enhance its overall NH<sub>3</sub> decomposition activity.</p>","PeriodicalId":61,"journal":{"name":"The Journal of Physical Chemistry C","volume":"129 14","pages":"6697–6718 6697–6718"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First-Principles Insights into the Thermocatalytic Cracking of Ammonia-Hydrogen Blends on Fe(110). 2. Kinetics\",\"authors\":\"J. Mark P. Martirez*,&nbsp;Sophia Kurdziel and Emily A. Carter*,&nbsp;\",\"doi\":\"10.1021/acs.jpcc.4c0730310.1021/acs.jpcc.4c07303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Ammonia (NH<sub>3</sub>) is an energy-rich molecule that is routinely synthesized from nitrogen (N<sub>2</sub>) and hydrogen (H<sub>2</sub>). NH<sub>3</sub>’s more favorable physical properties compared to H<sub>2</sub> suggests it may offer a way to more conveniently store, transport, and, when needed, extract H<sub>2</sub> via thermal decomposition. However, the high kinetic barrier and endoergicity to decompose to H<sub>2</sub> and N<sub>2</sub> require high temperatures. The standard reaction free energy indicates nearly 100% thermodynamic conversion to the diatomic molecules only at ∼673 K and higher. However, even at these temperatures, a catalyst, e.g., iron (Fe), is needed for favorable kinetic conversion. Here, we explore via density functional theory the kinetics of NH<sub>3</sub> decomposition on the most stable facet of body-centered cubic Fe, namely, (110), under typical high-temperature and finite-pressure operando conditions. We predict coverage-dependent energetics of elementary surface reactions, often neglected in atomic-scale modeling. From these models, we find the recombinative desorption of adsorbed N as N<sub>2</sub> is rate-determining at 573.15–773.15 K and even at an extreme case of 1173.15 K. From microkinetic modeling, we find that the steady-state turnover frequencies (TOFs) for N<sub>2</sub> and H<sub>2</sub> generation rates (<i>r</i><sub>H<sub>2</sub></sub>) depend exponentially on temperature. The catalyst achieves a steady-state TOF of 36.4 s<sup>–1</sup> and an <i>r</i><sub>H<sub>2</sub></sub> of 0.107 μmol cm<sup>–2</sup> s<sup>–1</sup> for a feed of 1.8 bar NH<sub>3</sub> with 0.2 bar H<sub>2</sub> at 1173.15 K. However, at 773.15 K, with the same feed composition and velocity, the steady-state TOF and <i>r</i><sub>H<sub>2</sub></sub> decrease to 0.14 s<sup>–1</sup> and 4.10 × 10<sup>–4</sup> μmol cm<sup>–2</sup> s<sup>–1</sup>, respectively, as the process is significantly hindered by slow N<sub>2</sub> desorption. Although at first glance counterintuitive, our simulations suggest that surface modifications that reduce Fe’s reactivity toward NH<i><sub><i>x</i></sub></i> species should enhance its overall NH<sub>3</sub> decomposition activity.</p>\",\"PeriodicalId\":61,\"journal\":{\"name\":\"The Journal of Physical Chemistry C\",\"volume\":\"129 14\",\"pages\":\"6697–6718 6697–6718\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c07303\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpcc.4c07303","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

氨(NH3)是一种富含能量的分子,通常由氮(N2)和氢(H2)合成。与H2相比,NH3更有利的物理性质表明它可能提供一种更方便的储存、运输和在需要时通过热分解提取H2的方法。然而,高的动力学屏障和内生能分解成H2和N2需要高温。标准反应自由能表明,仅在~ 673 K或更高的温度下,双原子分子的热力学转化接近100%。然而,即使在这些温度下,也需要催化剂,例如铁(Fe),以实现有利的动力学转化。在这里,我们通过密度泛函理论探讨了在典型的高温和有限压力操作条件下,NH3在体心立方铁最稳定面(110)上的分解动力学。我们预测了在原子尺度模型中经常被忽略的基本表面反应的依赖于覆盖的能量学。从这些模型中,我们发现在573.15-773.15 K,甚至在1173.15 K的极端情况下,吸附的N作为N2的重组解吸是速率决定的。从微动力学模型中,我们发现N2和H2生成速率(rH2)的稳态周转频率(TOFs)与温度呈指数关系。在1173.15 K下,当NH3为1.8 bar, H2为0.2 bar时,催化剂的稳态TOF为36.4 s-1, rH2为0.107 μmol cm-2 s-1。然而,在773.15 K时,在相同进料组成和速度下,稳态TOF和rH2分别下降到0.14 μmol cm-2 s-1和4.10 × 10-4 μmol cm-2 s-1,这一过程受到N2缓慢脱附的明显阻碍。虽然乍一看违反直觉,但我们的模拟表明,表面改性降低了铁对NHx的反应性,应该提高其整体NH3分解活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

First-Principles Insights into the Thermocatalytic Cracking of Ammonia-Hydrogen Blends on Fe(110). 2. Kinetics

First-Principles Insights into the Thermocatalytic Cracking of Ammonia-Hydrogen Blends on Fe(110). 2. Kinetics

Ammonia (NH3) is an energy-rich molecule that is routinely synthesized from nitrogen (N2) and hydrogen (H2). NH3’s more favorable physical properties compared to H2 suggests it may offer a way to more conveniently store, transport, and, when needed, extract H2 via thermal decomposition. However, the high kinetic barrier and endoergicity to decompose to H2 and N2 require high temperatures. The standard reaction free energy indicates nearly 100% thermodynamic conversion to the diatomic molecules only at ∼673 K and higher. However, even at these temperatures, a catalyst, e.g., iron (Fe), is needed for favorable kinetic conversion. Here, we explore via density functional theory the kinetics of NH3 decomposition on the most stable facet of body-centered cubic Fe, namely, (110), under typical high-temperature and finite-pressure operando conditions. We predict coverage-dependent energetics of elementary surface reactions, often neglected in atomic-scale modeling. From these models, we find the recombinative desorption of adsorbed N as N2 is rate-determining at 573.15–773.15 K and even at an extreme case of 1173.15 K. From microkinetic modeling, we find that the steady-state turnover frequencies (TOFs) for N2 and H2 generation rates (rH2) depend exponentially on temperature. The catalyst achieves a steady-state TOF of 36.4 s–1 and an rH2 of 0.107 μmol cm–2 s–1 for a feed of 1.8 bar NH3 with 0.2 bar H2 at 1173.15 K. However, at 773.15 K, with the same feed composition and velocity, the steady-state TOF and rH2 decrease to 0.14 s–1 and 4.10 × 10–4 μmol cm–2 s–1, respectively, as the process is significantly hindered by slow N2 desorption. Although at first glance counterintuitive, our simulations suggest that surface modifications that reduce Fe’s reactivity toward NHx species should enhance its overall NH3 decomposition activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry C
The Journal of Physical Chemistry C 化学-材料科学:综合
CiteScore
6.50
自引率
8.10%
发文量
2047
审稿时长
1.8 months
期刊介绍: The Journal of Physical Chemistry A/B/C is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信