时空分数阶Keller-Segel-Navier-Stokes系统Cauchy问题的温和解

IF 2.5 2区 数学 Q1 MATHEMATICS
Ziwen Jiang, Lizhen Wang
{"title":"时空分数阶Keller-Segel-Navier-Stokes系统Cauchy问题的温和解","authors":"Ziwen Jiang, Lizhen Wang","doi":"10.1007/s13540-025-00400-w","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the Cauchy problem of time-space fractional Keller-Segel-Navier-Stokes system in <span>\\({\\mathbb {R}}^d~(d\\ge 2)\\)</span>, which describes both memory effect and Lévy process of the system. The local and global existence of mild solutions are obtained by the <span>\\(L^p-L^q\\)</span> estimates of Mittag-Leffler operators combined with Banach fixed point theorem and Banach implicit function theorem, respectively. Furthermore, some properties are established, such as mass conservation, decay estimates, stability and self-similarity of mild solutions.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"3 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mild solutions to the Cauchy problem for time-space fractional Keller-Segel-Navier-Stokes system\",\"authors\":\"Ziwen Jiang, Lizhen Wang\",\"doi\":\"10.1007/s13540-025-00400-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates the Cauchy problem of time-space fractional Keller-Segel-Navier-Stokes system in <span>\\\\({\\\\mathbb {R}}^d~(d\\\\ge 2)\\\\)</span>, which describes both memory effect and Lévy process of the system. The local and global existence of mild solutions are obtained by the <span>\\\\(L^p-L^q\\\\)</span> estimates of Mittag-Leffler operators combined with Banach fixed point theorem and Banach implicit function theorem, respectively. Furthermore, some properties are established, such as mass conservation, decay estimates, stability and self-similarity of mild solutions.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-025-00400-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-025-00400-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了\({\mathbb {R}}^d~(d\ge 2)\)中时空分数阶keller - sekel - navier - stokes系统的Cauchy问题,该问题既描述了系统的记忆效应,也描述了系统的lcv过程。结合Banach不动点定理和Banach隐函数定理,分别对Mittag-Leffler算子的\(L^p-L^q\)估计得到了温和解的局部存在性和全局存在性。此外,还建立了温和溶液的质量守恒、衰减估计、稳定性和自相似等性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mild solutions to the Cauchy problem for time-space fractional Keller-Segel-Navier-Stokes system

This paper investigates the Cauchy problem of time-space fractional Keller-Segel-Navier-Stokes system in \({\mathbb {R}}^d~(d\ge 2)\), which describes both memory effect and Lévy process of the system. The local and global existence of mild solutions are obtained by the \(L^p-L^q\) estimates of Mittag-Leffler operators combined with Banach fixed point theorem and Banach implicit function theorem, respectively. Furthermore, some properties are established, such as mass conservation, decay estimates, stability and self-similarity of mild solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信