{"title":"用于高保真漫反射光学成像的时空编码调制技术","authors":"Ben Wiesel;Shlomi Arnon","doi":"10.1109/TMI.2025.3558865","DOIUrl":null,"url":null,"abstract":"Diffuse optical imaging (DOI) offers valuable insights into scattering mediums, but the quest for high-resolution imaging often requires dense sampling strategies, leading to higher imaging errors and lengthy acquisition times. This work introduces Space-Time Encoded Modulation (STEM), a novel light modulation scheme enabling low-noise, high-resolution imaging with single-pixel detectors. In STEM, a laser illuminates the sample, and the transmitted light is detected using a single pixel detector. The detected image is partitioned into a two-dimensional array of sub-images, each encoded with a unique quasi-orthogonal code. These coded sub-images represent light transmission at specific locations along the sample boundary. A single-pixel detector then measures their combined transmission. By virtue of their quasi-orthogonality, the relative strength of each sub-image can be measured, enabling image formation. In this paper, we present a comprehensive mathematical description and experimental validation of the STEM method. Compared to traditional raster scanning, STEM significantly enhances imaging quality, reducing imaging errors by up to 60% and yielding a 3.5-fold increase in reconstruction contrast.","PeriodicalId":94033,"journal":{"name":"IEEE transactions on medical imaging","volume":"44 9","pages":"3717-3726"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Space-Time Encoded Modulation for High-Fidelity Diffuse Optical Imaging\",\"authors\":\"Ben Wiesel;Shlomi Arnon\",\"doi\":\"10.1109/TMI.2025.3558865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffuse optical imaging (DOI) offers valuable insights into scattering mediums, but the quest for high-resolution imaging often requires dense sampling strategies, leading to higher imaging errors and lengthy acquisition times. This work introduces Space-Time Encoded Modulation (STEM), a novel light modulation scheme enabling low-noise, high-resolution imaging with single-pixel detectors. In STEM, a laser illuminates the sample, and the transmitted light is detected using a single pixel detector. The detected image is partitioned into a two-dimensional array of sub-images, each encoded with a unique quasi-orthogonal code. These coded sub-images represent light transmission at specific locations along the sample boundary. A single-pixel detector then measures their combined transmission. By virtue of their quasi-orthogonality, the relative strength of each sub-image can be measured, enabling image formation. In this paper, we present a comprehensive mathematical description and experimental validation of the STEM method. Compared to traditional raster scanning, STEM significantly enhances imaging quality, reducing imaging errors by up to 60% and yielding a 3.5-fold increase in reconstruction contrast.\",\"PeriodicalId\":94033,\"journal\":{\"name\":\"IEEE transactions on medical imaging\",\"volume\":\"44 9\",\"pages\":\"3717-3726\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on medical imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10955484/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical imaging","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10955484/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Space-Time Encoded Modulation for High-Fidelity Diffuse Optical Imaging
Diffuse optical imaging (DOI) offers valuable insights into scattering mediums, but the quest for high-resolution imaging often requires dense sampling strategies, leading to higher imaging errors and lengthy acquisition times. This work introduces Space-Time Encoded Modulation (STEM), a novel light modulation scheme enabling low-noise, high-resolution imaging with single-pixel detectors. In STEM, a laser illuminates the sample, and the transmitted light is detected using a single pixel detector. The detected image is partitioned into a two-dimensional array of sub-images, each encoded with a unique quasi-orthogonal code. These coded sub-images represent light transmission at specific locations along the sample boundary. A single-pixel detector then measures their combined transmission. By virtue of their quasi-orthogonality, the relative strength of each sub-image can be measured, enabling image formation. In this paper, we present a comprehensive mathematical description and experimental validation of the STEM method. Compared to traditional raster scanning, STEM significantly enhances imaging quality, reducing imaging errors by up to 60% and yielding a 3.5-fold increase in reconstruction contrast.