{"title":"基于细观力学模型的共存型含甲烷水合物沉积物宏观力学特性理论分析","authors":"Zhihao Zhou, Huaning Wang, Mingjing Jiang","doi":"10.1002/nag.3978","DOIUrl":null,"url":null,"abstract":"The impacts of different types of methane hydrates (e.g., pore‐filling, load‐bearing, grain‐coating, and cementing types) on the mechanical properties of methane hydrate‐bearing sediments (MHBS) exhibit significant variations. However, the quantitative distinctions remain largely unexplored. Following the framework of the classical micromechanics‐based model, a simplified physical model of regularly arranged particle assembly is proposed for the coexistent‐type MHBS (the MHBS containing two or more types of hydrates) to derive the macroscopic constitutive relations, strength criteria, and corresponding macro–micro quantitative correlation of elastic and strength parameters. The obtained theoretical solutions are verified by comparison with indoor test results, and the influence of environmental factors and hydrate saturation, especially different types of hydrates, on the macroscopic mechanical properties of MHBS under various initial planar void ratios of sediments is investigated in detail. The results show that there are significant differences in the micromechanisms that affect the macroscopic mechanical properties of different hydrate types. Specifically, the load‐bearing hydrate has almost no contribution to the improvement of the elastic modulus and peak strength, while the cementing type plays a dominant role in the macroscopic mechanical properties of MHBS, and the influence of the hydrate with the grain‐coating type is between the load‐bearing and cementing types.","PeriodicalId":13786,"journal":{"name":"International Journal for Numerical and Analytical Methods in Geomechanics","volume":"6 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Analysis of Macroscopic Mechanical Properties of Coexistence Type Methane Hydrate‐Bearing Sediments by Micromechanics‐Based Model\",\"authors\":\"Zhihao Zhou, Huaning Wang, Mingjing Jiang\",\"doi\":\"10.1002/nag.3978\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The impacts of different types of methane hydrates (e.g., pore‐filling, load‐bearing, grain‐coating, and cementing types) on the mechanical properties of methane hydrate‐bearing sediments (MHBS) exhibit significant variations. However, the quantitative distinctions remain largely unexplored. Following the framework of the classical micromechanics‐based model, a simplified physical model of regularly arranged particle assembly is proposed for the coexistent‐type MHBS (the MHBS containing two or more types of hydrates) to derive the macroscopic constitutive relations, strength criteria, and corresponding macro–micro quantitative correlation of elastic and strength parameters. The obtained theoretical solutions are verified by comparison with indoor test results, and the influence of environmental factors and hydrate saturation, especially different types of hydrates, on the macroscopic mechanical properties of MHBS under various initial planar void ratios of sediments is investigated in detail. The results show that there are significant differences in the micromechanisms that affect the macroscopic mechanical properties of different hydrate types. Specifically, the load‐bearing hydrate has almost no contribution to the improvement of the elastic modulus and peak strength, while the cementing type plays a dominant role in the macroscopic mechanical properties of MHBS, and the influence of the hydrate with the grain‐coating type is between the load‐bearing and cementing types.\",\"PeriodicalId\":13786,\"journal\":{\"name\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Numerical and Analytical Methods in Geomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/nag.3978\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical and Analytical Methods in Geomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/nag.3978","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Theoretical Analysis of Macroscopic Mechanical Properties of Coexistence Type Methane Hydrate‐Bearing Sediments by Micromechanics‐Based Model
The impacts of different types of methane hydrates (e.g., pore‐filling, load‐bearing, grain‐coating, and cementing types) on the mechanical properties of methane hydrate‐bearing sediments (MHBS) exhibit significant variations. However, the quantitative distinctions remain largely unexplored. Following the framework of the classical micromechanics‐based model, a simplified physical model of regularly arranged particle assembly is proposed for the coexistent‐type MHBS (the MHBS containing two or more types of hydrates) to derive the macroscopic constitutive relations, strength criteria, and corresponding macro–micro quantitative correlation of elastic and strength parameters. The obtained theoretical solutions are verified by comparison with indoor test results, and the influence of environmental factors and hydrate saturation, especially different types of hydrates, on the macroscopic mechanical properties of MHBS under various initial planar void ratios of sediments is investigated in detail. The results show that there are significant differences in the micromechanisms that affect the macroscopic mechanical properties of different hydrate types. Specifically, the load‐bearing hydrate has almost no contribution to the improvement of the elastic modulus and peak strength, while the cementing type plays a dominant role in the macroscopic mechanical properties of MHBS, and the influence of the hydrate with the grain‐coating type is between the load‐bearing and cementing types.
期刊介绍:
The journal welcomes manuscripts that substantially contribute to the understanding of the complex mechanical behaviour of geomaterials (soils, rocks, concrete, ice, snow, and powders), through innovative experimental techniques, and/or through the development of novel numerical or hybrid experimental/numerical modelling concepts in geomechanics. Topics of interest include instabilities and localization, interface and surface phenomena, fracture and failure, multi-physics and other time-dependent phenomena, micromechanics and multi-scale methods, and inverse analysis and stochastic methods. Papers related to energy and environmental issues are particularly welcome. The illustration of the proposed methods and techniques to engineering problems is encouraged. However, manuscripts dealing with applications of existing methods, or proposing incremental improvements to existing methods – in particular marginal extensions of existing analytical solutions or numerical methods – will not be considered for review.